These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 22383342)

  • 1. Model-based learning using a mixture of mixtures of Gaussian and uniform distributions.
    Browne RP; McNicholas PD; Sparling MD
    IEEE Trans Pattern Anal Mach Intell; 2012 Apr; 34(4):814-7. PubMed ID: 22383342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gaussian mixture density modeling, decomposition, and applications.
    Zhuang X; Huang Y; Palaniappan K; Zhao Y
    IEEE Trans Image Process; 1996; 5(9):1293-302. PubMed ID: 18285218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized competitive learning of gaussian mixture models.
    Lu Z; Ip HH
    IEEE Trans Syst Man Cybern B Cybern; 2009 Aug; 39(4):901-9. PubMed ID: 19362913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm.
    Sanjay-Gopal S; Hebert TJ
    IEEE Trans Image Process; 1998; 7(7):1014-28. PubMed ID: 18276317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust parameter estimation of intensity distributions for brain magnetic resonance images.
    Schroeter P; Vesin JM; Langenberger T; Meuli R
    IEEE Trans Med Imaging; 1998 Apr; 17(2):172-86. PubMed ID: 9688150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model-based clustering of microarray expression data via latent Gaussian mixture models.
    McNicholas PD; Murphy TB
    Bioinformatics; 2010 Nov; 26(21):2705-12. PubMed ID: 20802251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust sequential data modeling using an outlier tolerant hidden Markov model.
    Chatzis SP; Kosmopoulos DI; Varvarigou TA
    IEEE Trans Pattern Anal Mach Intell; 2009 Sep; 31(9):1657-69. PubMed ID: 19574625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixtures of Shifted AsymmetricLaplace Distributions.
    Franczak BC; Browne RP; McNicholas PD
    IEEE Trans Pattern Anal Mach Intell; 2014 Jun; 36(6):1149-57. PubMed ID: 26353277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmentation and intensity estimation of microarray images using a gamma-t mixture model.
    Baek J; Son YS; McLachlan GJ
    Bioinformatics; 2007 Feb; 23(4):458-65. PubMed ID: 17166856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient greedy learning of gaussian mixture models.
    Verbeek JJ; Vlassis N; Kröse B
    Neural Comput; 2003 Feb; 15(2):469-85. PubMed ID: 12590816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian estimation of beta mixture models with variational inference.
    Ma Z; Leijon A
    IEEE Trans Pattern Anal Mach Intell; 2011 Nov; 33(11):2160-73. PubMed ID: 21422484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of generalized mixtures and its application in image segmentation.
    Delignon Y; Marzouki A; Pieczynski W
    IEEE Trans Image Process; 1997; 6(10):1364-75. PubMed ID: 18282892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manifold regularized semi-supervised Gaussian mixture model.
    Gan H; Sang N; Huang R
    J Opt Soc Am A Opt Image Sci Vis; 2015 Apr; 32(4):566-75. PubMed ID: 26366765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multivariate analysis of neuronal interactions in the generalized partial least squares framework: simulations and empirical studies.
    Lin FH; McIntosh AR; Agnew JA; Eden GF; Zeffiro TA; Belliveau JW
    Neuroimage; 2003 Oct; 20(2):625-42. PubMed ID: 14568440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust Bayesian clustering.
    Archambeau C; Verleysen M
    Neural Netw; 2007 Jan; 20(1):129-38. PubMed ID: 17011164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An EM-based semi-parametric mixture model approach to the regression analysis of competing-risks data.
    Ng SK; McLachlan GJ
    Stat Med; 2003 Apr; 22(7):1097-111. PubMed ID: 12652556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of two-component mixtures of lognormal distributions in grouped, doubly truncated data: analysis of red blood cell volume distributions.
    McLaren CE; Wagstaff M; Brittenham GM; Jacobs A
    Biometrics; 1991 Jun; 47(2):607-22. PubMed ID: 1912264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parsimonious mixtures of multivariate contaminated normal distributions.
    Punzo A; McNicholas PD
    Biom J; 2016 Nov; 58(6):1506-1537. PubMed ID: 27510372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Component analysis approach to estimation of tissue intensity distributions of 3D images.
    Zagorodnov V; Ciptadi A
    IEEE Trans Med Imaging; 2011 Mar; 30(3):838-48. PubMed ID: 21172751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A GMM-IG framework for selecting genes as expression panel biomarkers.
    Wang M; Chen JY
    Artif Intell Med; 2010; 48(2-3):75-82. PubMed ID: 20004087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.