These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22383398)

  • 1. Orthogonal riboswitches for tuneable coexpression in bacteria.
    Dixon N; Robinson CJ; Geerlings T; Duncan JN; Drummond SP; Micklefield J
    Angew Chem Int Ed Engl; 2012 Apr; 51(15):3620-4. PubMed ID: 22383398
    [No Abstract]   [Full Text] [Related]  

  • 2. Synthetic riboswitches that induce gene expression in diverse bacterial species.
    Topp S; Reynoso CM; Seeliger JC; Goldlust IS; Desai SK; Murat D; Shen A; Puri AW; Komeili A; Bertozzi CR; Scott JR; Gallivan JP
    Appl Environ Microbiol; 2010 Dec; 76(23):7881-4. PubMed ID: 20935124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering an inducible gene expression system for Bacillus subtilis from a strong constitutive promoter and a theophylline-activated synthetic riboswitch.
    Cui W; Han L; Cheng J; Liu Z; Zhou L; Guo J; Zhou Z
    Microb Cell Fact; 2016 Nov; 15(1):199. PubMed ID: 27876054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered riboswitches: Expanding researchers' toolbox with synthetic RNA regulators.
    Wittmann A; Suess B
    FEBS Lett; 2012 Jul; 586(15):2076-83. PubMed ID: 22710175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic Evaluation of Genetic and Environmental Factors Affecting Performance of Translational Riboswitches.
    Kent R; Dixon N
    ACS Synth Biol; 2019 Apr; 8(4):884-901. PubMed ID: 30897329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The promise of riboswitches as potential antibacterial drug targets.
    Lünse CE; Schüller A; Mayer G
    Int J Med Microbiol; 2014 Jan; 304(1):79-92. PubMed ID: 24140145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insights into riboswitch regulation mechanisms.
    Bastet L; Dubé A; Massé E; Lafontaine DA
    Mol Microbiol; 2011 Jun; 80(5):1148-54. PubMed ID: 21477128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating metabolic pathways and digging for genes of unknown function in microbial communities: the riboswitch approach.
    Gutiérrez-Preciado A; Merino E
    Clin Microbiol Infect; 2012 Jul; 18 Suppl 4():35-9. PubMed ID: 22647046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic folding design of aptazyme-regulated expression devices as riboswitches for metabolic engineering.
    Sparkman-Yager D; Correa-Rojas RA; Carothers JM
    Methods Enzymol; 2015; 550():321-40. PubMed ID: 25605393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic Riboswitches: From Plug and Pray toward Plug and Play.
    Etzel M; Mörl M
    Biochemistry; 2017 Mar; 56(9):1181-1198. PubMed ID: 28206750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Available methods for assembling expression cassettes for synthetic biology.
    Wang T; Ma X; Zhu H; Li A; Du G; Chen J
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):1853-63. PubMed ID: 22311648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic manipulation of Streptomyces species.
    Nybo SE; Shepherd MD; Bosserman MA; Rohr J
    Curr Protoc Microbiol; 2010 Nov; Chapter 10():Unit 10E.3. PubMed ID: 21053253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Special content of this issue. “International Symposium on Biopolymers 2010” (ISBP2010).
    Steinbüchel A
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1265. PubMed ID: 21286707
    [No Abstract]   [Full Text] [Related]  

  • 15. Random transposon vectors pUTTns for the markerless integration of exogenous genes into gram-negative eubacteria chromosomes.
    Li R; Wang G; Shen B; Wang R; Song Y; Li S; Jiang J
    J Microbiol Methods; 2009 Nov; 79(2):220-6. PubMed ID: 19778558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic manipulation of Mycobacterium abscessus.
    Medjahed H; Singh AK
    Curr Protoc Microbiol; 2010 Aug; Chapter 10():Unit 10D.2. PubMed ID: 20812214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of the Coprinopsis cinerea molecular toolkit using new construct design and additional marker genes.
    Collins CM; Heneghan MN; Kilaru S; Bailey AM; Foster GD
    J Microbiol Methods; 2010 Aug; 82(2):156-62. PubMed ID: 20570599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering a riboswitch-based genetic platform for the self-directed evolution of acid-tolerant phenotypes.
    Pham HL; Wong A; Chua N; Teo WS; Yew WS; Chang MW
    Nat Commun; 2017 Sep; 8(1):411. PubMed ID: 28871084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial turn-on riboswitch to control target gene expression using a wild-type riboswitch splicing mechanism.
    Yamauchi T; Kubodera T; Miyoshi D; Sugimoto N; Hirohata S
    J Biosci Bioeng; 2021 Feb; 131(2):115-123. PubMed ID: 33051157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic parts to program bacteria.
    Voigt CA
    Curr Opin Biotechnol; 2006 Oct; 17(5):548-57. PubMed ID: 16978856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.