These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 22383806)

  • 1. Silicon isotope evidence against an enstatite chondrite Earth.
    Fitoussi C; Bourdon B
    Science; 2012 Mar; 335(6075):1477-80. PubMed ID: 22383806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Earth's missing lead may not be in the core.
    Lagos M; Ballhaus C; Münker C; Wohlgemuth-Ueberwasser C; Berndt J; Kuzmin DV
    Nature; 2008 Nov; 456(7218):89-92. PubMed ID: 18987741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primitive Solar System materials and Earth share a common initial (142)Nd abundance.
    Bouvier A; Boyet M
    Nature; 2016 Sep; 537(7620):399-402. PubMed ID: 27629644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geochemical arguments for an Earth-like Moon-forming impactor.
    Dauphas N; Burkhardt C; Warren PH; Fang-Zhen T
    Philos Trans A Math Phys Eng Sci; 2014 Sep; 372(2024):20130244. PubMed ID: 25114316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nd isotope variation between the Earth-Moon system and enstatite chondrites.
    Johnston S; Brandon A; McLeod C; Rankenburg K; Becker H; Copeland P
    Nature; 2022 Nov; 611(7936):501-506. PubMed ID: 36203033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon.
    Caro G; Bourdon B; Halliday AN; Quitté G
    Nature; 2008 Mar; 452(7185):336-9. PubMed ID: 18354479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the giant impactor Theia in lunar rocks.
    Herwartz D; Pack A; Friedrichs B; Bischoff A
    Science; 2014 Jun; 344(6188):1146-50. PubMed ID: 24904162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neodymium isotope evidence for a chondritic composition of the Moon.
    Rankenburg K; Brandon AD; Neal CR
    Science; 2006 Jun; 312(5778):1369-72. PubMed ID: 16741118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Si-Mg isotopes in enstatite chondrites and accretion of reduced planetary bodies.
    Sikdar J; Rai VK
    Sci Rep; 2020 Jan; 10(1):1273. PubMed ID: 31988372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The isotopic nature of the Earth's accreting material through time.
    Dauphas N
    Nature; 2017 Jan; 541(7638):521-524. PubMed ID: 28128239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The origin of chondritic macromolecular organic matter: a carbon and nitrogen isotope study.
    Alexander CM; Russell SS; Arden JW; Ash RD; Grady MM; Pillinger CT
    Meteorit Planet Sci; 1998 Jul; 33(4):603-22. PubMed ID: 11543070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromium isotopic insights into the origin of chondrite parent bodies and the early terrestrial volatile depletion.
    Zhu K; Moynier F; Schiller M; Alexander CMO; Davidson J; Schrader DL; van Kooten E; Bizzarro M
    Geochim Cosmochim Acta; 2021 May; 301():158-186. PubMed ID: 34393262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixing, volatile loss and compositional change during impact-driven accretion of the Earth.
    Halliday AN
    Nature; 2004 Feb; 427(6974):505-9. PubMed ID: 14765187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining the composition of the Earth.
    Drake MJ; Righter K
    Nature; 2002 Mar; 416(6876):39-44. PubMed ID: 11882886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silicon in the Earth's core.
    Georg RB; Halliday AN; Schauble EA; Reynolds BC
    Nature; 2007 Jun; 447(7148):1102-6. PubMed ID: 17597757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meteorite zircon constraints on the bulk Lu-Hf isotope composition and early differentiation of the Earth.
    Iizuka T; Yamaguchi T; Hibiya Y; Amelin Y
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5331-6. PubMed ID: 25870298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A young Moon-forming giant impact at 70-110 million years accompanied by late-stage mixing, core formation and degassing of the Earth.
    Halliday AN
    Philos Trans A Math Phys Eng Sci; 2008 Nov; 366(1883):4163-81. PubMed ID: 18826916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium isotopic evidence for a high-energy giant impact origin of the Moon.
    Wang K; Jacobsen SB
    Nature; 2016 Oct; 538(7626):487-490. PubMed ID: 27617635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact.
    Grewal DS; Dasgupta R; Sun C; Tsuno K; Costin G
    Sci Adv; 2019 Jan; 5(1):eaau3669. PubMed ID: 30746449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Earth's water may have been inherited from material similar to enstatite chondrite meteorites.
    Piani L; Marrocchi Y; Rigaudier T; Vacher LG; Thomassin D; Marty B
    Science; 2020 Aug; 369(6507):1110-1113. PubMed ID: 32855337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.