BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 22384018)

  • 1. Evaluating characteristics of de novo assembly software on 454 transcriptome data: a simulation approach.
    Mundry M; Bornberg-Bauer E; Sammeth M; Feulner PG
    PLoS One; 2012; 7(2):e31410. PubMed ID: 22384018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing de novo assemblers for 454 transcriptome data.
    Kumar S; Blaxter ML
    BMC Genomics; 2010 Oct; 11():571. PubMed ID: 20950480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo transcriptome assembly for a non-model species, the blood-sucking bug Triatoma brasiliensis, a vector of Chagas disease.
    Marchant A; Mougel F; Almeida C; Jacquin-Joly E; Costa J; Harry M
    Genetica; 2015 Apr; 143(2):225-39. PubMed ID: 25233990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short read Illumina data for the de novo assembly of a non-model snail species transcriptome (Radix balthica, Basommatophora, Pulmonata), and a comparison of assembler performance.
    Feldmeyer B; Wheat CW; Krezdorn N; Rotter B; Pfenninger M
    BMC Genomics; 2011 Jun; 12():317. PubMed ID: 21679424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Challenges and advances for transcriptome assembly in non-model species.
    Ungaro A; Pech N; Martin JF; McCairns RJS; Mévy JP; Chappaz R; Gilles A
    PLoS One; 2017; 12(9):e0185020. PubMed ID: 28931057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of De Novo Transcriptome Assemblers and k-mer Strategies Using the Killifish, Fundulus heteroclitus.
    Rana SB; Zadlock FJ; Zhang Z; Murphy WR; Bentivegna CS
    PLoS One; 2016; 11(4):e0153104. PubMed ID: 27054874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative performance of transcriptome assembly methods for non-model organisms.
    Huang X; Chen XG; Armbruster PA
    BMC Genomics; 2016 Jul; 17():523. PubMed ID: 27464550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of different assembly and annotation tools on analysis of simulated viral metagenomic communities in the gut.
    Vázquez-Castellanos JF; García-López R; Pérez-Brocal V; Pignatelli M; Moya A
    BMC Genomics; 2014 Jan; 15():37. PubMed ID: 24438450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly and annotation of a non-model gastropod (Nerita melanotragus) transcriptome: a comparison of de novo assemblers.
    Amin S; Prentis PJ; Gilding EK; Pavasovic A
    BMC Res Notes; 2014 Aug; 7():488. PubMed ID: 25084827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of short read metagenomic assembly.
    Charuvaka A; Rangwala H
    BMC Genomics; 2011; 12 Suppl 2(Suppl 2):S8. PubMed ID: 21989307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying wrong assemblies in de novo short read primary sequence assembly contigs.
    Chawla V; Kumar R; Shankar R
    J Biosci; 2016 Sep; 41(3):455-74. PubMed ID: 27581937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CAP3: A DNA sequence assembly program.
    Huang X; Madan A
    Genome Res; 1999 Sep; 9(9):868-77. PubMed ID: 10508846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of short read quality and quantity on a de novo vertebrate transcriptome assembly.
    Garcia TI; Shen Y; Catchen J; Amores A; Schartl M; Postlethwait J; Walter RB
    Comp Biochem Physiol C Toxicol Pharmacol; 2012 Jan; 155(1):95-101. PubMed ID: 21651990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms.
    Haznedaroglu BZ; Reeves D; Rismani-Yazdi H; Peccia J
    BMC Bioinformatics; 2012 Jul; 13():170. PubMed ID: 22808927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TransFlow: a modular framework for assembling and assessing accurate de novo transcriptomes in non-model organisms.
    Seoane P; Espigares M; Carmona R; Polonio Á; Quintana J; Cretazzo E; Bota J; Pérez-García A; Dios Alché J; Gómez L; Claros MG
    BMC Bioinformatics; 2018 Nov; 19(Suppl 14):416. PubMed ID: 30453874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iAssembler: a package for de novo assembly of Roche-454/Sanger transcriptome sequences.
    Zheng Y; Zhao L; Gao J; Fei Z
    BMC Bioinformatics; 2011 Nov; 12():453. PubMed ID: 22111509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compacta: a fast contig clustering tool for de novo assembled transcriptomes.
    Razo-Mendivil FG; Martínez O; Hayano-Kanashiro C
    BMC Genomics; 2020 Feb; 21(1):148. PubMed ID: 32046653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of de novo transcriptome assembly.
    Clarke K; Yang Y; Marsh R; Xie L; Zhang KK
    Sci China Life Sci; 2013 Feb; 56(2):156-62. PubMed ID: 23393031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical assessment of assembly strategies for non-model species mRNA-Seq data and application of next-generation sequencing to the comparison of C(3) and C(4) species.
    Bräutigam A; Mullick T; Schliesky S; Weber AP
    J Exp Bot; 2011 May; 62(9):3093-102. PubMed ID: 21398430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly.
    Xu GC; Xu TJ; Zhu R; Zhang Y; Li SQ; Wang HW; Li JT
    Gigascience; 2019 Jan; 8(1):. PubMed ID: 30576505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.