BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 22384058)

  • 41. Evidence for transceptor function of cellodextrin transporters in Neurospora crassa.
    Znameroski EA; Li X; Tsai JC; Galazka JM; Glass NL; Cate JH
    J Biol Chem; 2014 Jan; 289(5):2610-9. PubMed ID: 24344125
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Current state-of-the-art in ethanol production from lignocellulosic feedstocks.
    Robak K; Balcerek M
    Microbiol Res; 2020 Nov; 240():126534. PubMed ID: 32683278
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ethanol production from sunflower meal biomass by simultaneous saccharification and fermentation (SSF) with Kluyveromyces marxianus ATCC 36907.
    Camargo D; Gomes SD; Sene L
    Bioprocess Biosyst Eng; 2014 Nov; 37(11):2235-42. PubMed ID: 24794173
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A process for energy-efficient high-solids fed-batch enzymatic liquefaction of cellulosic biomass.
    Cardona MJ; Tozzi EJ; Karuna N; Jeoh T; Powell RL; McCarthy MJ
    Bioresour Technol; 2015 Dec; 198():488-96. PubMed ID: 26432053
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biocommodity Engineering.
    Lynd LR; Wyman CE; Gerngross TU
    Biotechnol Prog; 1999 Oct; 15(5):777-793. PubMed ID: 10514248
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Construction and characterization of different fusion proteins between cellulases and β-glucosidase to improve glucose production and thermostability.
    Lee HL; Chang CK; Teng KH; Liang PH
    Bioresour Technol; 2011 Feb; 102(4):3973-6. PubMed ID: 21169014
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Solid state fermentation and crude cellulase based bioconversion of potential bamboo biomass to reducing sugar for bioenergy production.
    Pandey RK; Chand K; Tewari L
    J Sci Food Agric; 2018 Sep; 98(12):4411-4419. PubMed ID: 29435990
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ethanol production from alkali-treated rice straw via simultaneous saccharification and fermentation using newly isolated thermotolerant Pichia kudriavzevii HOP-1.
    Oberoi HS; Babbar N; Sandhu SK; Dhaliwal SS; Kaur U; Chadha BS; Bhargav VK
    J Ind Microbiol Biotechnol; 2012 Apr; 39(4):557-66. PubMed ID: 22131104
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Production of cellulosic ethanol from sugarcane bagasse by steam explosion: Effect of extractives content, acid catalysis and different fermentation technologies.
    Neves PV; Pitarelo AP; Ramos LP
    Bioresour Technol; 2016 May; 208():184-194. PubMed ID: 26943936
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of Bioethanol Production by
    Zheng J; Negi A; Khomlaem C; Kim BS
    J Microbiol Biotechnol; 2019 Jun; 29(6):905-912. PubMed ID: 31154746
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Production of bio-ethanol from pretreated agricultural byproduct using enzymatic hydrolysis and simultaneous saccharification.
    Gomathi D; Muthulakshmi C; Kumar DG; Ravikumar G; Kalaiselvi M; Uma C
    Mikrobiologiia; 2012; 81(2):220-6. PubMed ID: 22693831
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Review: Continuous hydrolysis and fermentation for cellulosic ethanol production.
    Brethauer S; Wyman CE
    Bioresour Technol; 2010 Jul; 101(13):4862-74. PubMed ID: 20006926
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Progress on cellulase and enzymatic hydrolysis of lignocellulosic biomass].
    Fang X; Qin Y; Li X; Wang L; Wang T; Zhu M; Qu Y
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):864-9. PubMed ID: 20954385
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of lignocellulosic composition and structure on the bioethanol production from different poplar lines.
    Duan X; Zhang C; Ju X; Li Q; Chen S; Wang J; Liu Z
    Bioresour Technol; 2013 Jul; 140():363-7. PubMed ID: 23708852
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Deficiency of β-Glucosidase Beneficial for the Simultaneous Saccharification and Lipid Production by the Oleaginous Yeast Lipomyces starkeyi.
    Gou Q; Tang M; Wang Y; Zhou W; Liu Y; Gong Z
    Appl Biochem Biotechnol; 2020 Feb; 190(2):745-757. PubMed ID: 31485895
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass.
    Schell DJ; Dowe N; Chapeaux A; Nelson RS; Jennings EW
    Bioresour Technol; 2016 Apr; 205():153-8. PubMed ID: 26826954
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lactic acid production from cellulosic material by synergetic hydrolysis and fermentation.
    Shen X; Xia L
    Appl Biochem Biotechnol; 2006 Jun; 133(3):251-62. PubMed ID: 16720905
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimizing on-farm pretreatment of perennial grasses for fuel ethanol production.
    Digman MF; Shinners KJ; Casler MD; Dien BS; Hatfield RD; Jung HJ; Muck RE; Weimer PJ
    Bioresour Technol; 2010 Jul; 101(14):5305-14. PubMed ID: 20202834
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improving bioethanol production from olive pruning biomass by deacetylation step prior acid hydrolysis and fermentation processes.
    Moya AJ; Peinado S; Mateo S; Fonseca BG; Sánchez S
    Bioresour Technol; 2016 Nov; 220():239-245. PubMed ID: 27579798
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cellulosic fuel ethanol: alternative fermentation process designs with wild-type and recombinant Zymomonas mobilis.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2003; 105 -108():457-69. PubMed ID: 12721468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.