BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 22384210)

  • 1. Combined chromatin and expression analysis reveals specific regulatory mechanisms within cytokine genes in the macrophage early immune response.
    Iglesias MJ; Reilly SJ; Emanuelsson O; Sennblad B; Pirmoradian Najafabadi M; Folkersen L; Mälarstig A; Lagergren J; Eriksson P; Hamsten A; Odeberg J
    PLoS One; 2012; 7(2):e32306. PubMed ID: 22384210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Whole-genome maps of USF1 and USF2 binding and histone H3 acetylation reveal new aspects of promoter structure and candidate genes for common human disorders.
    Rada-Iglesias A; Ameur A; Kapranov P; Enroth S; Komorowski J; Gingeras TR; Wadelius C
    Genome Res; 2008 Mar; 18(3):380-92. PubMed ID: 18230803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide investigation of in vivo EGR-1 binding sites in monocytic differentiation.
    Kubosaki A; Tomaru Y; Tagami M; Arner E; Miura H; Suzuki T; Suzuki M; Suzuki H; Hayashizaki Y
    Genome Biol; 2009; 10(4):R41. PubMed ID: 19374776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide promoter analysis of histone modifications in human monocyte-derived antigen presenting cells.
    Tserel L; Kolde R; Rebane A; Kisand K; Org T; Peterson H; Vilo J; Peterson P
    BMC Genomics; 2010 Nov; 11():642. PubMed ID: 21087476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear presence of nuclear factor of activated T cells (NFAT) c3 and c4 is required for Toll-like receptor-activated innate inflammatory response of monocytes/macrophages.
    Minematsu H; Shin MJ; Celil Aydemir AB; Kim KO; Nizami SA; Chung GJ; Lee FY
    Cell Signal; 2011 Nov; 23(11):1785-93. PubMed ID: 21726630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of cap analysis of gene expression and chromatin immunoprecipitation analysis on array reveals genome-wide androgen receptor signaling in prostate cancer cells.
    Takayama K; Tsutsumi S; Katayama S; Okayama T; Horie-Inoue K; Ikeda K; Urano T; Kawazu C; Hasegawa A; Ikeo K; Gojyobori T; Ouchi Y; Hayashizaki Y; Aburatani H; Inoue S
    Oncogene; 2011 Feb; 30(5):619-30. PubMed ID: 20890304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease.
    Baillie JK; Arner E; Daub C; De Hoon M; Itoh M; Kawaji H; Lassmann T; Carninci P; Forrest AR; Hayashizaki Y; ; Faulkner GJ; Wells CA; Rehli M; Pavli P; Summers KM; Hume DA
    PLoS Genet; 2017 Mar; 13(3):e1006641. PubMed ID: 28263993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying novel transcription factors involved in the inflammatory response by using binding site motif scanning in genomic regions defined by histone acetylation.
    Askovich PS; Ramsey SA; Diercks AH; Kennedy KA; Knijnenburg TA; Aderem A
    PLoS One; 2017; 12(9):e0184850. PubMed ID: 28922390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis of Pax8 binding provides new insights into thyroid functions.
    Ruiz-Llorente S; Carrillo Santa de Pau E; Sastre-Perona A; Montero-Conde C; Gómez-López G; Fagin JA; Valencia A; Pisano DG; Santisteban P
    BMC Genomics; 2012 Apr; 13():147. PubMed ID: 22531031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions.
    Miao F; Gonzalo IG; Lanting L; Natarajan R
    J Biol Chem; 2004 Apr; 279(17):18091-7. PubMed ID: 14976218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional analysis of LPS-stimulated activation of trout (Oncorhynchus mykiss) monocyte/macrophage cells in primary culture treated with cortisol.
    MacKenzie S; Iliev D; Liarte C; Koskinen H; Planas JV; Goetz FW; Mölsä H; Krasnov A; Tort L
    Mol Immunol; 2006 Mar; 43(9):1340-8. PubMed ID: 16239032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome sequencing of microglial cells stimulated with TLR3 and TLR4 ligands.
    Das A; Chai JC; Kim SH; Lee YS; Park KS; Jung KH; Chai YG
    BMC Genomics; 2015 Jul; 16(1):517. PubMed ID: 26159724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clustered ChIP-Seq-defined transcription factor binding sites and histone modifications map distinct classes of regulatory elements.
    Rye M; Sætrom P; Håndstad T; Drabløs F
    BMC Biol; 2011 Nov; 9():80. PubMed ID: 22115494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of novel transcriptional regulators involved in macrophage differentiation and activation in U937 cells.
    Baek YS; Haas S; Hackstein H; Bein G; Hernandez-Santana M; Lehrach H; Sauer S; Seitz H
    BMC Immunol; 2009 Apr; 10():18. PubMed ID: 19341462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histone H3 lysine 4 monomethylation (H3K4me1) and H3 lysine 9 monomethylation (H3K9me1): distribution and their association in regulating gene expression under hyperglycaemic/hyperinsulinemic conditions in 3T3 cells.
    Gupta J; Kumar S; Li J; Krishna Murthy Karuturi R; Tikoo K
    Biochimie; 2012 Dec; 94(12):2656-64. PubMed ID: 22951486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of chromatin remodeling through RNA polymerase II stalling in the immune system.
    Wang Z; Liu S; Tao Y
    Mol Immunol; 2019 Apr; 108():75-80. PubMed ID: 30784765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual RNA sequencing reveals the expression of unique transcriptomic signatures in lipopolysaccharide-induced BV-2 microglial cells.
    Das A; Chai JC; Kim SH; Park KS; Lee YS; Jung KH; Chai YG
    PLoS One; 2015; 10(3):e0121117. PubMed ID: 25811458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the MIR155 host gene in physiological and pathological processes.
    Elton TS; Selemon H; Elton SM; Parinandi NL
    Gene; 2013 Dec; 532(1):1-12. PubMed ID: 23246696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression profiling of lipopolysaccharide target genes in RAW264.7 cells by oligonucleotide microarray analyses.
    Huang H; Park CK; Ryu JY; Chang EJ; Lee Y; Kang SS; Kim HH
    Arch Pharm Res; 2006 Oct; 29(10):890-7. PubMed ID: 17121185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms establishing TLR4-responsive activation states of inflammatory response genes.
    Escoubet-Lozach L; Benner C; Kaikkonen MU; Lozach J; Heinz S; Spann NJ; Crotti A; Stender J; Ghisletti S; Reichart D; Cheng CS; Luna R; Ludka C; Sasik R; Garcia-Bassets I; Hoffmann A; Subramaniam S; Hardiman G; Rosenfeld MG; Glass CK
    PLoS Genet; 2011 Dec; 7(12):e1002401. PubMed ID: 22174696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.