These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 22384789)
1. Pharmacophore mapping and in silico screening to identify new potent leads for A(2A) adenosine receptor as antagonists. Mustyala KK; Chitturi AR; Naikal James PS; Vuruputuri U J Recept Signal Transduct Res; 2012 Apr; 32(2):102-13. PubMed ID: 22384789 [TBL] [Abstract][Full Text] [Related]
2. First pharmacophore model of CCR3 receptor antagonists and its homology model-assisted, stepwise virtual screening. Jain V; Saravanan P; Arvind A; Mohan CG Chem Biol Drug Des; 2011 May; 77(5):373-87. PubMed ID: 21284830 [TBL] [Abstract][Full Text] [Related]
3. Pharmacophore filtering and 3D-QSAR in the discovery of new JAK2 inhibitors. Dhanachandra Singh Kh; Karthikeyan M; Kirubakaran P; Nagamani S J Mol Graph Model; 2011 Sep; 30():186-97. PubMed ID: 21831680 [TBL] [Abstract][Full Text] [Related]
4. 3D-pharmacophore models for selective A2A and A2B adenosine receptor antagonists. Wei J; Wang S; Gao S; Dai X; Gao Q J Chem Inf Model; 2007; 47(2):613-25. PubMed ID: 17330954 [TBL] [Abstract][Full Text] [Related]
5. Molecular docking study of A(3) adenosine receptor antagonists and pharmacophore-based drug design. Wei J; Li H; Qu W; Gao Q Neurochem Int; 2009 Dec; 55(7):637-42. PubMed ID: 19540293 [TBL] [Abstract][Full Text] [Related]
6. 3D-QSAR studies of some tetrasubstituted pyrazoles as COX-II inhibitors. Gupta GK; Kumar A Acta Pol Pharm; 2012; 69(4):763-72. PubMed ID: 22876620 [TBL] [Abstract][Full Text] [Related]
7. Exploration of new scaffolds as potential MAO-A inhibitors using pharmacophore and 3D-QSAR based in silico screening. Shelke SM; Bhosale SH; Dash RC; Suryawanshi MR; Mahadik KR Bioorg Med Chem Lett; 2011 Apr; 21(8):2419-24. PubMed ID: 21397504 [TBL] [Abstract][Full Text] [Related]
8. Revisiting a receptor-based pharmacophore hypothesis for human A(2A) adenosine receptor antagonists. Bacilieri M; Ciancetta A; Paoletta S; Federico S; Cosconati S; Cacciari B; Taliani S; Da Settimo F; Novellino E; Klotz KN; Spalluto G; Moro S J Chem Inf Model; 2013 Jul; 53(7):1620-37. PubMed ID: 23705857 [TBL] [Abstract][Full Text] [Related]
9. Complementarity between in silico and biophysical screening approaches in fragment-based lead discovery against the A(2A) adenosine receptor. Chen D; Ranganathan A; IJzerman AP; Siegal G; Carlsson J J Chem Inf Model; 2013 Oct; 53(10):2701-14. PubMed ID: 23971943 [TBL] [Abstract][Full Text] [Related]
10. Discovery of potent adenosine A2a antagonists as potential anti-Parkinson disease agents. Non-linear QSAR analyses integrated with pharmacophore modeling. Khanfar MA; Al-Qtaishat S; Habash M; Taha MO Chem Biol Interact; 2016 Jul; 254():93-101. PubMed ID: 27216633 [TBL] [Abstract][Full Text] [Related]
11. Substructure-based virtual screening for adenosine A2A receptor ligands. van der Horst E; van der Pijl R; Mulder-Krieger T; Bender A; Ijzerman AP ChemMedChem; 2011 Dec; 6(12):2302-11. PubMed ID: 22021213 [TBL] [Abstract][Full Text] [Related]
12. 3D-QSAR study of corticotropin-releasing factor 1 antagonists and pharmacophore-based drug design. Ye Y; Liao Q; Wei J; Gao Q Neurochem Int; 2010 Jan; 56(1):107-17. PubMed ID: 19782115 [TBL] [Abstract][Full Text] [Related]
13. Novel adenosine A(2A) receptor ligands: a synthetic, functional and computational investigation of selected literature adenosine A(2A) receptor antagonists for extending into extracellular space. Jörg M; Shonberg J; Mak FS; Miller ND; Yuriev E; Scammells PJ; Capuano B Bioorg Med Chem Lett; 2013 Jun; 23(11):3427-33. PubMed ID: 23602401 [TBL] [Abstract][Full Text] [Related]
14. Adenosine A2A receptor antagonists: new 8-substituted 9-ethyladenines as tools for in vivo rat models of Parkinson's disease. Volpini R; Dal Ben D; Lambertucci C; Marucci G; Mishra RC; Ramadori AT; Klotz KN; Trincavelli ML; Martini C; Cristalli G ChemMedChem; 2009 Jun; 4(6):1010-9. PubMed ID: 19343763 [TBL] [Abstract][Full Text] [Related]
15. Discovery of potential ZAP-70 kinase inhibitors: pharmacophore design, database screening and docking studies. Sanam R; Vadivelan S; Tajne S; Narasu L; Rambabu G; Jagarlapudi SA Eur J Med Chem; 2009 Dec; 44(12):4793-800. PubMed ID: 19674816 [TBL] [Abstract][Full Text] [Related]
16. Pharmacophore modeling and virtual screening to identify potential RET kinase inhibitors. Shih KC; Shiau CW; Chen TS; Ko CH; Lin CL; Lin CY; Hwang CS; Tang CY; Chen WR; Huang JW Bioorg Med Chem Lett; 2011 Aug; 21(15):4490-7. PubMed ID: 21724393 [TBL] [Abstract][Full Text] [Related]
17. 3D-QSAR (CoMFA and CoMSIA) and pharmacophore (GALAHAD) studies on the differential inhibition of aldose reductase by flavonoid compounds. Caballero J J Mol Graph Model; 2010 Nov; 29(3):363-71. PubMed ID: 20863730 [TBL] [Abstract][Full Text] [Related]
18. Stepwise development of structure-activity relationship of diverse PARP-1 inhibitors through comparative and validated in silico modeling techniques and molecular dynamics simulation. Halder AK; Saha A; Saha KD; Jha T J Biomol Struct Dyn; 2015; 33(8):1756-79. PubMed ID: 25350685 [TBL] [Abstract][Full Text] [Related]
19. Toward the identification of a reliable 3D QSAR pharmacophore model for the CCK2 receptor antagonism. Gupta AK; Varshney K; Saxena AK J Chem Inf Model; 2012 May; 52(5):1376-90. PubMed ID: 22530718 [TBL] [Abstract][Full Text] [Related]
20. Molecular determinants of ligand binding modes in the histamine H(4) receptor: linking ligand-based three-dimensional quantitative structure-activity relationship (3D-QSAR) models to in silico guided receptor mutagenesis studies. Istyastono EP; Nijmeijer S; Lim HD; van de Stolpe A; Roumen L; Kooistra AJ; Vischer HF; de Esch IJ; Leurs R; de Graaf C J Med Chem; 2011 Dec; 54(23):8136-47. PubMed ID: 22003888 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]