These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 22385122)

  • 1. Air-water partitioning of 222Rn and its dependence on water temperature and salinity.
    Schubert M; Paschke A; Lieberman E; Burnett WC
    Environ Sci Technol; 2012 Apr; 46(7):3905-11. PubMed ID: 22385122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple and rapid method for analyzing radon in coastal and ground waters using a radon-in-air monitor.
    Lee JM; Kim G
    J Environ Radioact; 2006; 89(3):219-28. PubMed ID: 16806610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of the water/air phase transition of radon and its implication on detection of radon-in-water concentrations: practical assessment of different on-site radon extraction methods.
    Schubert M; Paschke A; Bednorz D; Bürkin W; Stieglitz T
    Environ Sci Technol; 2012 Aug; 46(16):8945-51. PubMed ID: 22835087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of radon partition coefficients between water and organic liquids and their utilization for the assessment of subsurface NAPL contamination.
    Schubert M; Lehmann K; Paschke A
    Sci Total Environ; 2007 Apr; 376(1-3):306-16. PubMed ID: 17307243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Increasing the radon concentration in natural water without the use of radium preparations].
    Andreev SV
    Vopr Kurortol Fizioter Lech Fiz Kult; 1994; (3):12-5. PubMed ID: 7941465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous and discrete on-site detection of radon-222 in ground- and surface waters by means of an extraction module.
    Schmidt A; Schlueter M; Melles M; Schubert M
    Appl Radiat Isot; 2008 Dec; 66(12):1939-44. PubMed ID: 18586504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flooding of lignite mines: isotope variations and processes in a system influenced by saline groundwater.
    Trettin R; Glässer W; Lerche I; Seelig U; Treutler HC
    Isotopes Environ Health Stud; 2006 Jun; 42(2):159-79. PubMed ID: 16707317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial variation of waterborne radon and temporal variation of radon in water at nine Maine schools.
    Guiseppe VE; Gould TJ; Hess CT
    Health Phys; 2007 Apr; 92(4):358-65. PubMed ID: 17351500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample.
    Lee KY; Burnett WC
    J Radioanal Nucl Chem; 2013; 298(2):1359-1365. PubMed ID: 26224945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple bubbling system for measuring radon (222Rn) gas concentrations in water samples based on the high solubility of radon in olive oil.
    Al-Azmi D; Snopek B; Sayed AM; Domanski T
    J Environ Radioact; 2004; 71(2):175-86. PubMed ID: 14567951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using radon-222 as indicator for the evaluation of the efficiency of groundwater remediation by in situ air sparging.
    Schubert M; Schmidt A; Müller K; Weiss H
    J Environ Radioact; 2011 Feb; 102(2):193-9. PubMed ID: 21146260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferring coastal processes from regional-scale mapping of 222Radon and salinity: examples from the Great Barrier Reef, Australia.
    Stieglitz TC; Cook PG; Burnett WC
    J Environ Radioact; 2010 Jul; 101(7):544-52. PubMed ID: 20106568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radon as a naturally occurring tracer for the assessment of residual NAPL contamination of aquifers.
    Schubert M; Paschke A; Lau S; Geyer W; Knöller K
    Environ Pollut; 2007 Feb; 145(3):920-7. PubMed ID: 16781031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radon exchange dynamics in a karst system investigated by radon continuous measurements in water: first results.
    Peano G; Vigna B; Villavecchia E; Agnesod G
    Radiat Prot Dosimetry; 2011 May; 145(2-3):173-7. PubMed ID: 21586541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of fluoride and other aquatic parameters on radon concentration in natural waters.
    Salih I; Bäckström M; Karlsson S; Lund E; Pettersson HB
    Appl Radiat Isot; 2004 Jan; 60(1):99-104. PubMed ID: 14687642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved automated analysis of radon (222Rn) and thoron (220Rn) in natural waters.
    Dimova N; Burnett WC; Lane-Smith D
    Environ Sci Technol; 2009 Nov; 43(22):8599-603. PubMed ID: 20028058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel method using a silicone diffusion membrane for continuous ²²²Rn measurements for the quantification of groundwater discharge to streams and rivers.
    Hofmann H; Gilfedder BS; Cartwright I
    Environ Sci Technol; 2011 Oct; 45(20):8915-21. PubMed ID: 21882884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled radon, methane and nitrate sensors for large-scale assessment of groundwater discharge and non-point source pollution to coastal waters.
    Dulaiova H; Camilli R; Henderson PB; Charette MA
    J Environ Radioact; 2010 Jul; 101(7):553-63. PubMed ID: 20110141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the air-filled effective porosity parameter of Rogers and Nielson's (1991) bulk radon diffusion coefficient in unsaturated soils.
    Saâdi Z
    Health Phys; 2014 May; 106(5):598-607. PubMed ID: 24670909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature calibration formula for activated charcoal radon collectors.
    Cooper A; Le TN; Iimoto T; Kosako T
    J Environ Radioact; 2011 Jan; 102(1):60-3. PubMed ID: 20937546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.