These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 22385387)

  • 1. Formation of coffee stains on porous surfaces.
    Dou R; Derby B
    Langmuir; 2012 Mar; 28(12):5331-8. PubMed ID: 22385387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast evaporation of spreading droplets of colloidal suspensions.
    Maki KL; Kumar S
    Langmuir; 2011 Sep; 27(18):11347-63. PubMed ID: 21834573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaporation of sessile drops containing colloidal rods: coffee-ring and order-disorder transition.
    Dugyala VR; Basavaraj MG
    J Phys Chem B; 2015 Mar; 119(9):3860-7. PubMed ID: 25521279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overcoming the "coffee-stain" effect by compositional Marangoni-flow-assisted drop-drying.
    Majumder M; Rendall CS; Eukel JA; Wang JY; Behabtu N; Pint CL; Liu TY; Orbaek AW; Mirri F; Nam J; Barron AR; Hauge RH; Schmidt HK; Pasquali M
    J Phys Chem B; 2012 Jun; 116(22):6536-42. PubMed ID: 22587569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaporation stains: suppressing the coffee-ring effect by contact angle hysteresis.
    Li YF; Sheng YJ; Tsao HK
    Langmuir; 2013 Jun; 29(25):7802-11. PubMed ID: 23721254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Further Insights into Patterns from Drying Particle Laden Sessile Drops.
    Parthasarathy D; Thampi SP; Ravindran P; Basavaraj MG
    Langmuir; 2021 Apr; 37(14):4395-4402. PubMed ID: 33797915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marangoni effect reverses coffee-ring depositions.
    Hu H; Larson RG
    J Phys Chem B; 2006 Apr; 110(14):7090-4. PubMed ID: 16599468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops.
    Still T; Yunker PJ; Yodh AG
    Langmuir; 2012 Mar; 28(11):4984-8. PubMed ID: 22369657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drying of Ethanol/Water Droplets Containing Silica Nanoparticles.
    Shi J; Yang L; Bain CD
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14275-14285. PubMed ID: 30901186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convective flows in evaporating sessile droplets.
    Barmi MR; Meinhart CD
    J Phys Chem B; 2014 Mar; 118(9):2414-21. PubMed ID: 24512008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of coffee-stain patterns at the nanoscale: The role of nanoparticle solubility and solvent evaporation rate.
    Zhang J; Milzetti J; Leroy F; Müller-Plathe F
    J Chem Phys; 2017 Mar; 146(11):114503. PubMed ID: 28330371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of evaporation-induced flow at the pore scale on nanoparticle transport and deposition in drying unsaturated porous media.
    Yan S; Kibbey TCG
    J Contam Hydrol; 2019 Oct; 226():103524. PubMed ID: 31362130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterns from drying drops.
    Sefiane K
    Adv Colloid Interface Sci; 2014 Apr; 206():372-81. PubMed ID: 23746427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant-mediated control of colloid pattern assembly and attachment strength in evaporating droplets.
    Morales VL; Parlange JY; Wu M; Pérez-Reche FJ; Zhang W; Sang W; Steenhuis TS
    Langmuir; 2013 Feb; 29(6):1831-40. PubMed ID: 23327491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of stain geometry by drop evaporation of surfactant containing dispersions.
    Erbil HY
    Adv Colloid Interface Sci; 2015 Aug; 222():275-90. PubMed ID: 25217332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From coffee stains to uniform deposits: Significance of the contact-line mobility.
    Matavž A; Uršič U; Močivnik J; Richter D; Humar M; Čopar S; Malič B; Bobnar V
    J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1718-1727. PubMed ID: 34742086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of the coffee-ring effect by shape-dependent capillary interactions.
    Yunker PJ; Still T; Lohr MA; Yodh AG
    Nature; 2011 Aug; 476(7360):308-11. PubMed ID: 21850105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle size and substrate wettability dependent patterns in dried pendant drops.
    Kumar PL; Thampi SP; Basavaraj MG
    J Phys Condens Matter; 2021 Jan; 33(2):024003. PubMed ID: 33055378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns from drops drying on inclined substrates.
    Logesh Kumar P; Thampi SP; Basavaraj MG
    Soft Matter; 2021 Sep; 17(33):7670-7681. PubMed ID: 34319344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.