BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 22385480)

  • 1. Microwave- and nitronium ion-enabled rapid and direct production of highly conductive low-oxygen graphene.
    Chiu PL; Mastrogiovanni DD; Wei D; Louis C; Jeong M; Yu G; Saad P; Flach CR; Mendelsohn R; Garfunkel E; He H
    J Am Chem Soc; 2012 Apr; 134(13):5850-6. PubMed ID: 22385480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct production of graphene nanosheets for near infrared photoacoustic imaging.
    Patel MA; Yang H; Chiu PL; Mastrogiovanni DD; Flach CR; Savaram K; Gomez L; Hemnarine A; Mendelsohn R; Garfunkel E; Jiang H; He H
    ACS Nano; 2013 Sep; 7(9):8147-57. PubMed ID: 24001023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene: powder, flakes, ribbons, and sheets.
    James DK; Tour JM
    Acc Chem Res; 2013 Oct; 46(10):2307-18. PubMed ID: 23276286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave Enabled One-Pot, One-Step Fabrication and Nitrogen Doping of Holey Graphene Oxide for Catalytic Applications.
    Patel M; Feng W; Savaram K; Khoshi MR; Huang R; Sun J; Rabie E; Flach C; Mendelsohn R; Garfunkel E; He H
    Small; 2015 Jul; 11(27):3358-68. PubMed ID: 25683019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale.
    Wan X; Huang Y; Chen Y
    Acc Chem Res; 2012 Apr; 45(4):598-607. PubMed ID: 22280410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two dimensional soft material: new faces of graphene oxide.
    Kim J; Cote LJ; Huang J
    Acc Chem Res; 2012 Aug; 45(8):1356-64. PubMed ID: 22663082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties.
    Dong X; Su CY; Zhang W; Zhao J; Ling Q; Huang W; Chen P; Li LJ
    Phys Chem Chem Phys; 2010 Mar; 12(9):2164-9. PubMed ID: 20165764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly conducting graphene sheets and Langmuir-Blodgett films.
    Li X; Zhang G; Bai X; Sun X; Wang X; Wang E; Dai H
    Nat Nanotechnol; 2008 Sep; 3(9):538-42. PubMed ID: 18772914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets.
    Lin X; Shen X; Zheng Q; Yousefi N; Ye L; Mai YW; Kim JK
    ACS Nano; 2012 Dec; 6(12):10708-19. PubMed ID: 23171230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient preparation of large-area graphene oxide sheets for transparent conductive films.
    Zhao J; Pei S; Ren W; Gao L; Cheng HM
    ACS Nano; 2010 Sep; 4(9):5245-52. PubMed ID: 20815368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles.
    He H; Gao C
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3201-10. PubMed ID: 20958021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable aqueous dispersions of graphene prepared with hexamethylenetetramine as a reductant.
    Shen X; Jiang L; Ji Z; Wu J; Zhou H; Zhu G
    J Colloid Interface Sci; 2011 Feb; 354(2):493-7. PubMed ID: 21145557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir-Blodgett assembly.
    Zheng Q; Ip WH; Lin X; Yousefi N; Yeung KK; Li Z; Kim JK
    ACS Nano; 2011 Jul; 5(7):6039-51. PubMed ID: 21692470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of transparent, tough, and conductive shape-memory polyurethane films by incorporating a small amount of high-quality graphene.
    Jung YC; Kim JH; Hayashi T; Kim YA; Endo M; Terrones M; Dresselhaus MS
    Macromol Rapid Commun; 2012 Apr; 33(8):628-34. PubMed ID: 22328293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent synthesis of organophilic chemically functionalized graphene sheets.
    Shen J; Li N; Shi M; Hu Y; Ye M
    J Colloid Interface Sci; 2010 Aug; 348(2):377-83. PubMed ID: 20494367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials.
    Compton OC; Nguyen ST
    Small; 2010 Mar; 6(6):711-23. PubMed ID: 20225186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A facile route to fabricate stable reduced graphene oxide dispersions in various media and their transparent conductive thin films.
    Min K; Han TH; Kim J; Jung J; Jung C; Hong SM; Koo CM
    J Colloid Interface Sci; 2012 Oct; 383(1):36-42. PubMed ID: 22795947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aqueous only route toward graphene from graphite oxide.
    Liao KH; Mittal A; Bose S; Leighton C; Mkhoyan KA; Macosko CW
    ACS Nano; 2011 Feb; 5(2):1253-8. PubMed ID: 21271739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of extended single-layer graphene.
    Xu M; Fujita D; Sagisaka K; Watanabe E; Hanagata N
    ACS Nano; 2011 Feb; 5(2):1522-8. PubMed ID: 21226512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene-based composite materials.
    Stankovich S; Dikin DA; Dommett GH; Kohlhaas KM; Zimney EJ; Stach EA; Piner RD; Nguyen ST; Ruoff RS
    Nature; 2006 Jul; 442(7100):282-6. PubMed ID: 16855586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.