These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 22385604)
1. Evaluation of the biocompatibility of a coating material for an implantable bladder volume sensor. Kim SJ; Lee DS; Kim IG; Sohn DW; Park JY; Choi BK; Kim SW Kaohsiung J Med Sci; 2012 Mar; 28(3):123-9. PubMed ID: 22385604 [TBL] [Abstract][Full Text] [Related]
2. Cell and protein compatibility of parylene-C surfaces. Chang TY; Yadav VG; De Leo S; Mohedas A; Rajalingam B; Chen CL; Selvarasah S; Dokmeci MR; Khademhosseini A Langmuir; 2007 Nov; 23(23):11718-25. PubMed ID: 17915896 [TBL] [Abstract][Full Text] [Related]
3. Biocompatibility properties of surface-modified poly(dimethylsiloxane) for urinary applications. Lippens E; De Smet N; Schauvliege S; Martens A; Gasthuys F; Schacht E; Cornelissen R J Biomater Appl; 2013 Feb; 27(6):651-60. PubMed ID: 22274880 [TBL] [Abstract][Full Text] [Related]
4. In vitro and in vivo evaluation of anti-inflammatory agents using nanoengineered alginate carriers: towards localized implant inflammation suppression. Jayant RD; McShane MJ; Srivastava R Int J Pharm; 2011 Jan; 403(1-2):268-75. PubMed ID: 21050881 [TBL] [Abstract][Full Text] [Related]
5. Real-time bladder volume monitoring by the application of a new implantable bladder volume sensor for a small animal model. Lee DS; Kim SJ; Sohn DW; Choi B; Lee MK; Lee SJ; Kim SW Kaohsiung J Med Sci; 2011 Apr; 27(4):132-7. PubMed ID: 21463835 [TBL] [Abstract][Full Text] [Related]
6. Long-term characterization of neural electrodes based on parylene-caulked polydimethylsiloxane substrate. Jeong J; Chou N; Kim S Biomed Microdevices; 2016 Jun; 18(3):42. PubMed ID: 27165102 [TBL] [Abstract][Full Text] [Related]
7. Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils. Wright D; Rajalingam B; Selvarasah S; Dokmeci MR; Khademhosseini A Lab Chip; 2007 Oct; 7(10):1272-9. PubMed ID: 17896010 [TBL] [Abstract][Full Text] [Related]
8. Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications. Pinto S; Alves P; Matos CM; Santos AC; Rodrigues LR; Teixeira JA; Gil MH Colloids Surf B Biointerfaces; 2010 Nov; 81(1):20-6. PubMed ID: 20638249 [TBL] [Abstract][Full Text] [Related]
9. A study of the autofluorescence of parylene materials for microTAS applications. Lu B; Zheng S; Quach BQ; Tai YC Lab Chip; 2010 Jul; 10(14):1826-34. PubMed ID: 20431822 [TBL] [Abstract][Full Text] [Related]
10. Hollow polydimethylsiloxane beads with a porous structure for cell encapsulation. Oh MJ; Ryu TK; Choi SW Macromol Rapid Commun; 2013 Nov; 34(21):1728-33. PubMed ID: 24123479 [TBL] [Abstract][Full Text] [Related]
11. Long-term bilayer encapsulation performance of atomic layer deposited Al₂O₃ and Parylene C for biomedical implantable devices. Xie X; Rieth L; Caldwell R; Diwekar M; Tathireddy P; Sharma R; Solzbacher F IEEE Trans Biomed Eng; 2013 Oct; 60(10):2943-51. PubMed ID: 23751949 [TBL] [Abstract][Full Text] [Related]
12. The potential role of polymethyl methacrylate as a new packaging material for the implantable medical device in the bladder. Kim SJ; Choi B; Kim KS; Bae WJ; Hong SH; Lee JY; Hwang TK; Kim SW Biomed Res Int; 2015; 2015():852456. PubMed ID: 25705692 [TBL] [Abstract][Full Text] [Related]
13. Development and evaluation of biocompatible films of polytetrafluoroethylene polymers holding lithium phthalocyanine crystals for their use in EPR oximetry. Dinguizli M; Jeumont S; Beghein N; He J; Walczak T; Lesniewski PN; Hou H; Grinberg OY; Sucheta A; Swartz HM; Gallez B Biosens Bioelectron; 2006 Jan; 21(7):1015-22. PubMed ID: 16368480 [TBL] [Abstract][Full Text] [Related]
14. Molded polyethylene glycol microstructures for capturing cells within microfluidic channels. Khademhosseini A; Yeh J; Jon S; Eng G; Suh KY; Burdick JA; Langer R Lab Chip; 2004 Oct; 4(5):425-30. PubMed ID: 15472725 [TBL] [Abstract][Full Text] [Related]
15. Plasma-enhanced parylene coating for medical device applications. Bienkiewicz J Med Device Technol; 2006; 17(1):10-1. PubMed ID: 16483103 [TBL] [Abstract][Full Text] [Related]
16. Polyethylene glycol-containing polyurethane hydrogel coatings for improving the biocompatibility of neural electrodes. Rao L; Zhou H; Li T; Li C; Duan YY Acta Biomater; 2012 Jul; 8(6):2233-42. PubMed ID: 22406507 [TBL] [Abstract][Full Text] [Related]
17. Biocompatibility of common implantable sensor materials in a tumor xenograft model. Gray ME; Meehan J; Blair EO; Ward C; Langdon SP; Morrison LR; Marland JRK; Tsiamis A; Kunkler IH; Murray A; Argyle D J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1620-1633. PubMed ID: 30367816 [TBL] [Abstract][Full Text] [Related]
18. Microfabricated multilayer parylene-C stencils for the generation of patterned dynamic co-cultures. Jinno S; Moeller HC; Chen CL; Rajalingam B; Chung BG; Dokmeci MR; Khademhosseini A J Biomed Mater Res A; 2008 Jul; 86(1):278-88. PubMed ID: 18442109 [TBL] [Abstract][Full Text] [Related]