These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 22385845)

  • 21. Cytoskeletal architecture and immunocytochemical localization of microtubule-associated proteins in regions of axons associated with rapid axonal transport: the beta,beta'-iminodipropionitrile-intoxicated axon as a model system.
    Hirokawa N; Bloom GS; Vallee RB
    J Cell Biol; 1985 Jul; 101(1):227-39. PubMed ID: 2409096
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Altered microtubule organization in small-calibre axons of mice lacking tau protein.
    Harada A; Oguchi K; Okabe S; Kuno J; Terada S; Ohshima T; Sato-Yoshitake R; Takei Y; Noda T; Hirokawa N
    Nature; 1994 Jun; 369(6480):488-91. PubMed ID: 8202139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones.
    Biswas S; Kalil K
    J Neurosci; 2018 Jan; 38(2):291-307. PubMed ID: 29167405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling links softening of myelin and spectrin scaffolds of axons after a concussion to increased vulnerability to repeated injuries.
    Kant A; Johnson VE; Arena JD; Dollé JP; Smith DH; Shenoy VB
    Proc Natl Acad Sci U S A; 2021 Jul; 118(28):. PubMed ID: 34234016
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An organotypic uniaxial strain model using microfluidics.
    Dollé JP; Morrison B; Schloss RS; Yarmush ML
    Lab Chip; 2013 Feb; 13(3):432-42. PubMed ID: 23233120
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Axonal transport: how high microtubule density can compensate for boundary effects in small-caliber axons.
    Wortman JC; Shrestha UM; Barry DM; Garcia ML; Gross SP; Yu CC
    Biophys J; 2014 Feb; 106(4):813-23. PubMed ID: 24559984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PACSIN1, a Tau-interacting protein, regulates axonal elongation and branching by facilitating microtubule instability.
    Liu Y; Lv K; Li Z; Yu AC; Chen J; Teng J
    J Biol Chem; 2012 Nov; 287(47):39911-24. PubMed ID: 23035120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of tau in the spatial organization of axonal microtubules: keeping parallel microtubules evenly distributed despite macromolecular crowding.
    Méphon-Gaspard A; Boca M; Pioche-Durieu C; Desforges B; Burgo A; Hamon L; Piétrement O; Pastré D
    Cell Mol Life Sci; 2016 Oct; 73(19):3745-60. PubMed ID: 27076215
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theoretical elastic tensile behavior of muscle fiber bundles in traumatic loading events.
    Tamura A; Hongu JI; Matsumoto T
    Clin Biomech (Bristol, Avon); 2019 Oct; 69():184-190. PubMed ID: 31376809
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tau is enriched on dynamic microtubules in the distal region of growing axons.
    Black MM; Slaughter T; Moshiach S; Obrocka M; Fischer I
    J Neurosci; 1996 Jun; 16(11):3601-19. PubMed ID: 8642405
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simulated cytoskeletal collapse via tau degradation.
    Sendek A; Fuller HR; Hayre NR; Singh RR; Cox DL
    PLoS One; 2014; 9(8):e104965. PubMed ID: 25162587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The axonal transport motor kinesin-2 navigates microtubule obstacles via protofilament switching.
    Hoeprich GJ; Mickolajczyk KJ; Nelson SR; Hancock WO; Berger CL
    Traffic; 2017 May; 18(5):304-314. PubMed ID: 28267259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tau mediates microtubule bundle architectures mimicking fascicles of microtubules found in the axon initial segment.
    Chung PJ; Song C; Deek J; Miller HP; Li Y; Choi MC; Wilson L; Feinstein SC; Safinya CR
    Nat Commun; 2016 Jul; 7():12278. PubMed ID: 27452526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Orientation, assembly, and stability of microtubule bundles induced by a fragment of tau protein.
    Brandt R; Lee G
    Cell Motil Cytoskeleton; 1994; 28(2):143-54. PubMed ID: 8087873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons.
    Mandelkow EM; Thies E; Trinczek B; Biernat J; Mandelkow E
    J Cell Biol; 2004 Oct; 167(1):99-110. PubMed ID: 15466480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tau regulates the localization and function of End-binding proteins 1 and 3 in developing neuronal cells.
    Sayas CL; Tortosa E; Bollati F; Ramírez-Ríos S; Arnal I; Avila J
    J Neurochem; 2015 Jun; 133(5):653-67. PubMed ID: 25761518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A coupled model of fast axonal transport of organelles and slow axonal transport of tau protein.
    Kuznetsov IA; Kuznetsov AV
    Comput Methods Biomech Biomed Engin; 2015; 18(13):1485-94. PubMed ID: 24867161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Roles of Microtubules and Membrane Tension in Axonal Beading, Retraction, and Atrophy.
    Datar A; Ameeramja J; Bhat A; Srivastava R; Mishra A; Bernal R; Prost J; Callan-Jones A; Pullarkat PA
    Biophys J; 2019 Sep; 117(5):880-891. PubMed ID: 31427070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphorylation of tau by glycogen synthase kinase 3beta in intact mammalian cells influences the stability of microtubules.
    Sang H; Lu Z; Li Y; Ru B; Wang W; Chen J
    Neurosci Lett; 2001 Oct; 312(3):141-4. PubMed ID: 11602330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A thermodynamic model for force integration and microtubule assembly during axonal elongation.
    Buxbaum RE; Heidemann SR
    J Theor Biol; 1988 Oct; 134(3):379-90. PubMed ID: 3254435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.