BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 22385904)

  • 1. Biosynthesis of rhodiocyanosides in Lotus japonicus: rhodiocyanoside A is synthesized from (Z)-2-methylbutanaloxime via 2-methyl-2-butenenitrile.
    Saito S; Motawia MS; Olsen CE; Møller BL; Bak S
    Phytochemistry; 2012 May; 77():260-7. PubMed ID: 22385904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides lotaustralin and linamarin in Lotus japonicus.
    Forslund K; Morant M; Jørgensen B; Olsen CE; Asamizu E; Sato S; Tabata S; Bak S
    Plant Physiol; 2004 May; 135(1):71-84. PubMed ID: 15122013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The evolutionary appearance of non-cyanogenic hydroxynitrile glucosides in the Lotus genus is accompanied by the substrate specialization of paralogous β-glucosidases resulting from a crucial amino acid substitution.
    Lai D; Abou Hachem M; Robson F; Olsen CE; Wang TL; Møller BL; Takos AM; Rook F
    Plant J; 2014 Jul; 79(2):299-311. PubMed ID: 24861854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme.
    Jørgensen K; Morant AV; Morant M; Jensen NB; Olsen CE; Kannangara R; Motawia MS; Møller BL; Bak S
    Plant Physiol; 2011 Jan; 155(1):282-92. PubMed ID: 21045121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism.
    Takos A; Lai D; Mikkelsen L; Abou Hachem M; Shelton D; Motawia MS; Olsen CE; Wang TL; Martin C; Rook F
    Plant Cell; 2010 May; 22(5):1605-19. PubMed ID: 20453117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversification of an ancient theme: hydroxynitrile glucosides.
    Bjarnholt N; Rook F; Motawia MS; Cornett C; Jørgensen C; Olsen CE; Jaroszewski JW; Bak S; Møller BL
    Phytochemistry; 2008 May; 69(7):1507-16. PubMed ID: 18342345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The beta-glucosidases responsible for bioactivation of hydroxynitrile glucosides in Lotus japonicus.
    Morant AV; Bjarnholt N; Kragh ME; Kjaergaard CH; Jørgensen K; Paquette SM; Piotrowski M; Imberty A; Olsen CE; Møller BL; Bak S
    Plant Physiol; 2008 Jul; 147(3):1072-91. PubMed ID: 18467457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles.
    Zagrobelny M; Bak S; Ekstrøm CT; Olsen CE; Møller BL
    Insect Biochem Mol Biol; 2007 Jan; 37(1):10-8. PubMed ID: 17175442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway.
    Takos AM; Knudsen C; Lai D; Kannangara R; Mikkelsen L; Motawia MS; Olsen CE; Sato S; Tabata S; Jørgensen K; Møller BL; Rook F
    Plant J; 2011 Oct; 68(2):273-86. PubMed ID: 21707799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The biosynthesis of cyanogenic glucosides in seedlings of cassava (Manihot esculenta Crantz).
    Koch B; Nielsen VS; Halkier BA; Olsen CE; Møller BL
    Arch Biochem Biophys; 1992 Jan; 292(1):141-50. PubMed ID: 1727632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oximes, nitriles and 2-hydroxynitriles as precursors in the biosynthesis of cyanogenic glucosides.
    Tapper BA; Butler GW
    Biochem J; 1971 Oct; 124(5):935-41. PubMed ID: 5131015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin. Cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes.
    Andersen MD; Busk PK; Svendsen I; Møller BL
    J Biol Chem; 2000 Jan; 275(3):1966-75. PubMed ID: 10636899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 454 pyrosequencing based transcriptome analysis of Zygaena filipendulae with focus on genes involved in biosynthesis of cyanogenic glucosides.
    Zagrobelny M; Scheibye-Alsing K; Jensen NB; Møller BL; Gorodkin J; Bak S
    BMC Genomics; 2009 Dec; 10():574. PubMed ID: 19954531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of cyanogenic glucosides in
    Lai D; Maimann AB; Macea E; Ocampo CH; Cardona G; Pičmanová M; Darbani B; Olsen CE; Debouck D; Raatz B; Møller BL; Rook F
    Plant Direct; 2020 Aug; 4(8):e00244. PubMed ID: 32775954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconfigured Cyanogenic Glucoside Biosynthesis in
    Hansen CC; Sørensen M; Veiga TAM; Zibrandtsen JFS; Heskes AM; Olsen CE; Boughton BA; Møller BL; Neilson EHJ
    Plant Physiol; 2018 Nov; 178(3):1081-1095. PubMed ID: 30297456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of cyanogenic glucosides in Triglochin maritima and the involvement of cytochrome P450 enzymes.
    Nielsen JS; Moller BL
    Arch Biochem Biophys; 1999 Aug; 368(1):121-30. PubMed ID: 10415119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of cyanogenic glycosides.
    Conn EE
    Naturwissenschaften; 1979 Jan; 66(1):28-34. PubMed ID: 423994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biosynthesis of cyanogenic glucosides in higher plants. The (E)- and (Z)-isomers of p-hydroxyphenylacetaldehyde oxime as intermediates in the biosynthesis of dhurrin in Sorghum bicolor (L.) Moench.
    Halkier BA; Olsen CE; Møller BL
    J Biol Chem; 1989 Nov; 264(33):19487-94. PubMed ID: 2684955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The bifurcation of the cyanogenic glucoside and glucosinolate biosynthetic pathways.
    Clausen M; Kannangara RM; Olsen CE; Blomstedt CK; Gleadow RM; Jørgensen K; Bak S; Motawie MS; Møller BL
    Plant J; 2015 Nov; 84(3):558-73. PubMed ID: 26361733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biosynthesis of cyanogenic glucosides in higher plants. Channeling of intermediates in dhurrin biosynthesis by a microsomal system from Sorghum bicolor (linn) Moench.
    Møller BL; Conn EE
    J Biol Chem; 1980 Apr; 255(7):3049-56. PubMed ID: 7358727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.