These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 22385908)

  • 21. Revealing the maximum strength in nanotwinned copper.
    Lu L; Chen X; Huang X; Lu K
    Science; 2009 Jan; 323(5914):607-10. PubMed ID: 19179523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atomic-scale observation of nucleation- and growth-controlled deformation twinning in body-centered cubic nanocrystals.
    Zhong L; Zhang Y; Wang X; Zhu T; Mao SX
    Nat Commun; 2024 Jan; 15(1):560. PubMed ID: 38228646
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hetero interface and twin boundary mediated strengthening in nano-twinned Cu//Ag multilayered materials.
    Zheng Y; Li Q; Zhang J; Ye H; Zhang H; Shen L
    Nanotechnology; 2017 Oct; 28(41):415705. PubMed ID: 28782728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The significance of deformation mechanisms on the fracture behavior of phase reversion-induced nanostructured austenitic stainless steel.
    Misra RDK; Injeti VSY; Somani MC
    Sci Rep; 2018 May; 8(1):7908. PubMed ID: 29784921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ observation of twin-assisted grain growth in nanometer-scaled metal.
    He S; Wang C; Qi L; Ye H; Du K
    Micron; 2020 Apr; 131():102825. PubMed ID: 31951939
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A correlation between grain boundary character and deformation twin nucleation mechanism in coarse-grained high-Mn austenitic steel.
    Hung CY; Bai Y; Shimokawa T; Tsuji N; Murayama M
    Sci Rep; 2021 Apr; 11(1):8468. PubMed ID: 33875690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deciphering the interactions between single arm dislocation sources and coherent twin boundary in nickel bi-crystal.
    Samaee V; Dupraz M; Pardoen T; Van Swygenhoven H; Schryvers D; Idrissi H
    Nat Commun; 2021 Feb; 12(1):962. PubMed ID: 33574246
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Near-ideal strength in gold nanowires achieved through microstructural design.
    Deng C; Sansoz F
    ACS Nano; 2009 Oct; 3(10):3001-8. PubMed ID: 19743833
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular-Dynamics Analysis of the Mechanical Behavior of Plasma-Facing Tungsten.
    Weerasinghe A; Martinez E; Wirth BD; Maroudas D
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):8709-8722. PubMed ID: 36720131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Temperature on Deformation and Fracture Behaviour of Nanostructured Polycrystalline Ni Under Tensile Hydrostatic Stress by Molecular Dynamics Simulation.
    Pei L; Lu C; Tang Q; Zhang Y; Li J; Zhang C; Zhao X; Tieu K
    J Nanosci Nanotechnol; 2019 May; 19(5):2723-2731. PubMed ID: 30501772
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strengthening materials by engineering coherent internal boundaries at the nanoscale.
    Lu K; Lu L; Suresh S
    Science; 2009 Apr; 324(5925):349-52. PubMed ID: 19372422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A jogged dislocation governed strengthening mechanism in nanotwinned metals.
    Zhou H; Li X; Qu S; Yang W; Gao H
    Nano Lett; 2014 Sep; 14(9):5075-80. PubMed ID: 25133875
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of Interaction between Dislocation Loop and Coherent Twin Boundary in BCC Ta Film during Nanoindentation.
    Huang C; Peng X; Yang B; Zhao Y; Weng S; Fu T
    Nanomaterials (Basel); 2017 Nov; 7(11):. PubMed ID: 29113122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In Situ Study of Twin Boundary Stability in Nanotwinned Copper Pillars under Different Strain Rates.
    Chang SY; Huang YC; Lin SY; Lu CL; Chen C; Dao M
    Nanomaterials (Basel); 2023 Jan; 13(1):. PubMed ID: 36616100
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterizing the boundary lateral to the shear direction of deformation twins in magnesium.
    Liu Y; Li N; Shao S; Gong M; Wang J; McCabe RJ; Jiang Y; Tomé CN
    Nat Commun; 2016 Jun; 7():11577. PubMed ID: 27249539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding dislocation mechanics at the mesoscale using phase field dislocation dynamics.
    Beyerlein IJ; Hunter A
    Philos Trans A Math Phys Eng Sci; 2016 Apr; 374(2066):. PubMed ID: 27002063
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Atomistic deformation mechanisms in twinned copper nanospheres.
    Bian J; Niu X; Zhang H; Wang G
    Nanoscale Res Lett; 2014; 9(1):335. PubMed ID: 25024693
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scale law of complex deformation transitions of nanotwins in stainless steel.
    Chen AY; Zhu LL; Sun LG; Liu JB; Wang HT; Wang XY; Yang JH; Lu J
    Nat Commun; 2019 Mar; 10(1):1403. PubMed ID: 30926796
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crossing grain boundaries in metals by slip bands, cleavage and fatigue cracks.
    Pineau A
    Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713451
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of grain structure on Charpy impact behavior of copper.
    Liang N; Zhao Y; Wang J; Zhu Y
    Sci Rep; 2017 Mar; 7():44783. PubMed ID: 28303950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.