These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 22386108)

  • 1. Mercury capture into biogenic amorphous selenium nanospheres produced by mercury resistant Shewanella putrefaciens 200.
    Jiang S; Ho CT; Lee JH; Duong HV; Han S; Hur HG
    Chemosphere; 2012 May; 87(6):621-4. PubMed ID: 22386108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens.
    Fellowes JW; Pattrick RA; Green DI; Dent A; Lloyd JR; Pearce CI
    J Hazard Mater; 2011 May; 189(3):660-9. PubMed ID: 21300433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury reduction and complexation by natural organic matter in anoxic environments.
    Gu B; Bian Y; Miller CL; Dong W; Jiang X; Liang L
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1479-83. PubMed ID: 21220311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible dissolution of glutathione-mediated HgSe(x)S(1-x) nanoparticles and possible significance in Hg-Se antagonism.
    Khan MA; Wang F
    Chem Res Toxicol; 2009 Nov; 22(11):1827-32. PubMed ID: 19807058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of pyridine by the new bacterial isolates S. putrefaciens and B. sphaericus.
    Mathur AK; Majumder CB; Chatterjee S; Roy P
    J Hazard Mater; 2008 Sep; 157(2-3):335-43. PubMed ID: 18295401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biogenic FeS accelerates reductive dechlorination of carbon tetrachloride by Shewanella putrefaciens CN32.
    Huo YC; Li WW; Chen CB; Li CX; Zeng R; Lau TC; Huang TY
    Enzyme Microb Technol; 2016 Dec; 95():236-241. PubMed ID: 27866621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing UV-B radiation at the earth's surface and potential effects on aqueous mercury cycling and toxicity.
    Bonzongo JC; Donkor AK
    Chemosphere; 2003 Sep; 52(8):1263-73. PubMed ID: 12852978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudo-first-order reaction of chemically and biologically formed green rusts with HgII and C₁₅H₁₅N₃O₂: effects of pH and stabilizing agents (phosphate, silicate, polyacrylic acid, and bacterial cells).
    Remy PP; Etique M; Hazotte AA; Sergent AS; Estrade N; Cloquet C; Hanna K; Jorand FP
    Water Res; 2015 Mar; 70():266-78. PubMed ID: 25543237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of methylmercury and tributyltin (TBT) using marine microorganisms.
    Lee SE; Chung JW; Won HS; Lee DS; Lee YW
    Bull Environ Contam Toxicol; 2012 Feb; 88(2):239-44. PubMed ID: 22212416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of mercury-, arsenic-, and selenium-containing proteins in fish liver from a mercury polluted area of Guizhou Province, China.
    Li L; Wu G; Sun J; Li B; Li Y; Chen C; Chai Z; Iida A; Gao Y
    J Toxicol Environ Health A; 2008; 71(18):1266-9. PubMed ID: 18654898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation Mechanism and Toxicological Significance of Biogenic Mercury Selenide Nanoparticles in Human Hepatoma HepG2 Cells.
    Tanaka YK; Usuzawa H; Yoshida M; Kumagai K; Kobayashi K; Matsuyama S; Inoue T; Matsunaga A; Shimura M; Ruiz Encinar J; Costa-Fernández JM; Fukumoto Y; Suzuki N; Ogra Y
    Chem Res Toxicol; 2021 Dec; 34(12):2471-2484. PubMed ID: 34841876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative remobilization of biogenic uranium(IV) precipitates: effects of iron(II) and pH.
    Zhong L; Liu C; Zachara JM; Kennedy DW; Szecsody JE; Wood B
    J Environ Qual; 2005; 34(5):1763-71. PubMed ID: 16151228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the structural basis for selenium/mercury antagonism in Allium fistulosum.
    McNear DH; Afton SE; Caruso JA
    Metallomics; 2012 Mar; 4(3):267-76. PubMed ID: 22278221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioreduction of nitrobenzene, natural organic matter, and hematite by Shewanella putrefaciens CN32.
    Luan F; Burgos WD; Xie L; Zhou Q
    Environ Sci Technol; 2010 Jan; 44(1):184-90. PubMed ID: 19957913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selenium as an antidote in the treatment of mercury intoxication.
    Bjørklund G
    Biometals; 2015 Aug; 28(4):605-14. PubMed ID: 25947386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth mechanism of amorphous selenium nanoparticles synthesized by Shewanella sp. HN-41.
    Tam K; Ho CT; Lee JH; Lai M; Chang CH; Rheem Y; Chen W; Hur HG; Myung NV
    Biosci Biotechnol Biochem; 2010; 74(4):696-700. PubMed ID: 20378977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular precipitation of Pb by Shewanella putrefaciens CN32 during the reductive dissolution of Pb-jarosite.
    Smeaton CM; Fryer BJ; Weisener CG
    Environ Sci Technol; 2009 Nov; 43(21):8086-91. PubMed ID: 19924927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reductive dissolution of Tl(I)-jarosite by Shewanella putrefaciens: providing new insights into Tl biogeochemistry.
    Smeaton CM; Walshe GE; Fryer BJ; Weisener CG
    Environ Sci Technol; 2012 Oct; 46(20):11086-94. PubMed ID: 22992155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of ferric green rust by Shewanella putrefaciens.
    Jorand F; Zegeye A; Landry F; Ruby C
    Lett Appl Microbiol; 2007 Nov; 45(5):515-21. PubMed ID: 17868312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of carbon source on the biological reduction of ionic mercury.
    Oehmen A; Fradinho J; Serra S; Carvalho G; Capelo JL; Velizarov S; Crespo JG; Reis MA
    J Hazard Mater; 2009 Jun; 165(1-3):1040-8. PubMed ID: 19081674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.