These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 22386108)
21. Biogenic formation and growth of uraninite (UO₂). Lee SY; Baik MH; Choi JW Environ Sci Technol; 2010 Nov; 44(22):8409-14. PubMed ID: 20979351 [TBL] [Abstract][Full Text] [Related]
22. In vivo formation and binding of SeHg complexes to the erythrocyte surface. Cherdwongcharoensuk D; Oliveira MJ; Aguas AP Biol Trace Elem Res; 2010 Aug; 136(2):197-203. PubMed ID: 19830393 [TBL] [Abstract][Full Text] [Related]
23. Antibiotic resistance of Shewanella putrefaciens isolated from shellfish collected from the West Sea in Korea. Kang CH; Shin Y; Jeon H; Choi JH; Jeong S; So JS Mar Pollut Bull; 2013 Nov; 76(1-2):85-8. PubMed ID: 24125128 [TBL] [Abstract][Full Text] [Related]
24. Transport and retention of biogenic selenium nanoparticles in biofilm-coated quartz sand porous media and consequence for elemental mercury immobilization. Wang X; Liu B; Pan X; Gadd GM Sci Total Environ; 2019 Nov; 692():1116-1124. PubMed ID: 31539943 [TBL] [Abstract][Full Text] [Related]
25. Selenium-mercury interactions in man and animals. Falnoga I; Tusek-Znidaric M Biol Trace Elem Res; 2007 Dec; 119(3):212-20. PubMed ID: 17916944 [TBL] [Abstract][Full Text] [Related]
26. Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Liu C; Gorby YA; Zachara JM; Fredrickson JK; Brown CF Biotechnol Bioeng; 2002 Dec; 80(6):637-49. PubMed ID: 12378605 [TBL] [Abstract][Full Text] [Related]
27. Effect of natural organic matter on zinc inhibition of hematite bioreduction by Shewanella putrefaciens CN32. Stone JJ; Royer RA; Dempsey BA; Burgos WD Environ Sci Technol; 2007 Aug; 41(15):5284-90. PubMed ID: 17822092 [TBL] [Abstract][Full Text] [Related]
28. Volatilization of metal mercury from Organomercurials by highly mercury-resistant Acidithiobacillus ferrooxidans MON-1. Sugio T; Komoda T; Okazaki Y; Takeda Y; Nakamura S; Takeuchi F Biosci Biotechnol Biochem; 2010; 74(5):1007-12. PubMed ID: 20460735 [TBL] [Abstract][Full Text] [Related]
29. Volatilization and recovery of mercury from mercury-polluted soils and wastewaters using mercury-resistant Acidithiobacillus ferrooxidans strains SUG 2-2 and MON-1. Takeuchi F; Sugio T Environ Sci; 2006; 13(6):305-16. PubMed ID: 17273146 [TBL] [Abstract][Full Text] [Related]
30. Characterization of a marine-isolated mercury-resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction. Zhang W; Chen L; Liu D Appl Microbiol Biotechnol; 2012 Feb; 93(3):1305-14. PubMed ID: 21751007 [TBL] [Abstract][Full Text] [Related]
31. The influence of long-term mercury exposure on selenium availability in tissues: an evaluation of data. Falnoga I; Tusek-Znidaric M; Stegnar P Biometals; 2006 Jun; 19(3):283-94. PubMed ID: 16799866 [TBL] [Abstract][Full Text] [Related]
32. Biosorption of metals (Cu(2+), Zn(2+)) and anions (F(-), H(2)PO(4)(-)) by viable and autoclaved cells of the Gram-negative bacterium Shewanella putrefaciens. Chubar N; Behrends T; Van Cappellen P Colloids Surf B Biointerfaces; 2008 Aug; 65(1):126-33. PubMed ID: 18450432 [TBL] [Abstract][Full Text] [Related]
33. Effect of selenium on mercury vapour released from dental amalgams: an in vitro study. Psarras V; Derand T; Nilner K Swed Dent J; 1994; 18(1-2):15-23. PubMed ID: 8052947 [TBL] [Abstract][Full Text] [Related]
34. Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides. Taillefert M; Beckler JS; Carey E; Burns JL; Fennessey CM; DiChristina TJ J Inorg Biochem; 2007 Nov; 101(11-12):1760-7. PubMed ID: 17765315 [TBL] [Abstract][Full Text] [Related]
35. Correlation of mercury with selenium in human hair at a typical mercury-polluted area in China. Chai Z; Feng W; Qian Q; Guan M Biol Trace Elem Res; 1998 Aug; 63(2):95-104. PubMed ID: 9823435 [TBL] [Abstract][Full Text] [Related]
36. Distributions of mercury and selenium in rats ingesting mercury selenide nanoparticles. Takahashi K; Ruiz Encinar J; Costa-Fernández JM; Ogra Y Ecotoxicol Environ Saf; 2021 Dec; 226():112867. PubMed ID: 34624529 [TBL] [Abstract][Full Text] [Related]
37. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Park DH; Zeikus JG Appl Microbiol Biotechnol; 2002 Jun; 59(1):58-61. PubMed ID: 12073132 [TBL] [Abstract][Full Text] [Related]
38. Immobilization of elemental mercury by biogenic Se nanoparticles in soils of varying salinity. Wang X; Pan X; Gadd GM Sci Total Environ; 2019 Jun; 668():303-309. PubMed ID: 30852207 [TBL] [Abstract][Full Text] [Related]
39. Antagonistic interaction of mercury and selenium in a marine fish is dependent on their chemical species. Dang F; Wang WX Environ Sci Technol; 2011 Apr; 45(7):3116-22. PubMed ID: 21366307 [TBL] [Abstract][Full Text] [Related]
40. Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica. Pearce CI; Pattrick RA; Law N; Charnock JM; Coker VS; Fellowes JW; Oremland RS; Lloyd JR Environ Technol; 2009 Nov; 30(12):1313-26. PubMed ID: 19950474 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]