These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 22386199)

  • 1. A methodology to assess the energetic valorization of bio-based polymers from the packaging industry: pyrolysis of reprocessed polylactide.
    Badia JD; Santonja-Blasco L; Martínez-Felipe A; Ribes-Greus A
    Bioresour Technol; 2012 May; 111():468-75. PubMed ID: 22386199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reprocessed polylactide: studies of thermo-oxidative decomposition.
    Badia JD; Santonja-Blasco L; Martínez-Felipe A; Ribes-Greus A
    Bioresour Technol; 2012 Jun; 114():622-8. PubMed ID: 22481003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR.
    Özsin G; Pütün AE
    Waste Manag; 2017 Jun; 64():315-326. PubMed ID: 28320623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermogravimetric kinetics of crude glycerol.
    Dou B; Dupont V; Williams PT; Chen H; Ding Y
    Bioresour Technol; 2009 May; 100(9):2613-20. PubMed ID: 19167215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal pyrolysis of fresh and waste fishing nets.
    Kim SS; Jeon JK; Park YK; Kim S
    Waste Manag; 2005; 25(8):811-7. PubMed ID: 16125061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing thermal behaviours of cellulose and poly(methyl methacrylate) during co-pyrolysis based on an unified thermoanalytical study.
    Özsin G
    Bioresour Technol; 2020 Mar; 300():122700. PubMed ID: 31918293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermogravimetric study and kinetic analysis of dried industrial sludge pyrolysis.
    Liu G; Song H; Wu J
    Waste Manag; 2015 Jul; 41():128-33. PubMed ID: 25892437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of a new method for the analysis of decomposition gases of polymers by a combining thermogravimetric solid-phase extraction and thermal desorption gas chromatography mass spectrometry.
    Duemichen E; Braun U; Senz R; Fabian G; Sturm H
    J Chromatogr A; 2014 Aug; 1354():117-28. PubMed ID: 24929909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular weight dependence of the thermal degradation of poly(epsilon-caprolactone): a thermogravimetric differential thermal Fourier transform infrared spectroscopy study.
    Unger M; Vogel C; Siesler HW
    Appl Spectrosc; 2010 Jul; 64(7):805-9. PubMed ID: 20615294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on Thermal Decomposition Behaviors of Terpolymers of Carbon Dioxide, Propylene Oxide, and Cyclohexene Oxide.
    Chen S; Xiao M; Sun L; Meng Y
    Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30477090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Degradation Characteristic and Flame Retardancy of Polylactide-Based Nanobiocomposites.
    Malkappa K; Bandyopadhyay J; Ray SS
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30332755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(lactide-co-trimethylene carbonate) and polylactide/polytrimethylene carbonate blown films.
    Li H; Chang J; Qin Y; Wu Y; Yuan M; Zhang Y
    Int J Mol Sci; 2014 Feb; 15(2):2608-21. PubMed ID: 24534806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of brittle polylactide by novel hyperbranched polymer-based nanostructures.
    Bhardwaj R; Mohanty AK
    Biomacromolecules; 2007 Aug; 8(8):2476-84. PubMed ID: 17605464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crosslinked bicontinuous biobased PLA/NR blends via dynamic vulcanization using different curing systems.
    Yuan D; Chen K; Xu C; Chen Z; Chen Y
    Carbohydr Polym; 2014 Nov; 113():438-45. PubMed ID: 25256505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal behaviour and kinetics of alga Polysiphonia elongata biomass during pyrolysis.
    Ceylan S; Topcu Y; Ceylan Z
    Bioresour Technol; 2014 Nov; 171():193-8. PubMed ID: 25194914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic model of the thermal pyrolysis of chrome tanned leather treated with NaOH under different conditions using thermogravimetric analysis.
    Bañón E; Marcilla A; García AN; Martínez P; León M
    Waste Manag; 2016 Feb; 48():285-299. PubMed ID: 26603567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of biopretreatment on thermogravimetric and chemical characteristics of corn stover by different white-rot fungi.
    Yang X; Zeng Y; Ma F; Zhang X; Yu H
    Bioresour Technol; 2010 Jul; 101(14):5475-9. PubMed ID: 20207135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis characteristics and kinetics of oak trees using thermogravimetric analyzer and micro-tubing reactor.
    Park YH; Kim J; Kim SS; Park YK
    Bioresour Technol; 2009 Jan; 100(1):400-5. PubMed ID: 18693012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch.
    Wokadala OC; Emmambux NM; Ray SS
    Carbohydr Polym; 2014 Nov; 112():216-24. PubMed ID: 25129738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermogravimetric study on pyrolysis kinetics of Chlorella pyrenoidosa and bloom-forming cyanobacteria.
    Hu M; Chen Z; Guo D; Liu C; Xiao B; Hu Z; Liu S
    Bioresour Technol; 2015 Feb; 177():41-50. PubMed ID: 25479392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.