These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 22386203)

  • 21. Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles.
    Afkhami A; Moosavi R
    J Hazard Mater; 2010 Feb; 174(1-3):398-403. PubMed ID: 19819070
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sticking polydisperse hydrophobic magnetite nanoparticles to lipid membranes.
    Paulus M; Degen P; Brenner T; Tiemeyer S; Struth B; Tolan M; Rehage H
    Langmuir; 2010 Oct; 26(20):15945-7. PubMed ID: 20873726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles.
    Grimes BA; Liapis AI
    J Colloid Interface Sci; 2001 Feb; 234(1):223-243. PubMed ID: 11161509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction forces between colloidal particles in a solution of like-charged, adsorbing nanoparticles.
    McKee CT; Walz JY
    J Colloid Interface Sci; 2012 Jan; 365(1):72-80. PubMed ID: 21983089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reactivity of nanocolloidal particles gamma-Fe2O3 at the charged interfaces. Part 1. The approach of particles to an electrode.
    Lucas IT; Dubois E; Chevalet J; Durand-Vidal S
    Phys Chem Chem Phys; 2008 Jun; 10(22):3263-73. PubMed ID: 18500404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular dynamics simulation studies of the conformation and lateral mobility of a charged adsorbate biomolecule: implications for estimating the critical value of the radius of a pore in porous media.
    Zhang X; Wang JC; Lacki KM; Liapis AI
    J Colloid Interface Sci; 2005 Oct; 290(2):373-82. PubMed ID: 15925373
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adsorption of weak polyelectrolytes on charged nanoparticles. Impact of salt valency, pH, and nanoparticle charge density. Monte Carlo simulations.
    Carnal F; Stoll S
    J Phys Chem B; 2011 Oct; 115(42):12007-18. PubMed ID: 21902229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of calcium hydroxyapatite nanoparticles using microreactor and their characteristics of protein adsorption.
    Kandori K; Kuroda T; Togashi S; Katayama E
    J Phys Chem B; 2011 Feb; 115(4):653-9. PubMed ID: 21162543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Water density in the electric double layer at the insulator/electrolyte solution interface.
    Tikhonov AM
    J Phys Chem B; 2006 Feb; 110(6):2746-50. PubMed ID: 16471880
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One-step in situ synthesis of NHx-adsorbed rhodium nanocrystals at liquid-liquid interfaces for possible electrocatalytic applications.
    Patil VS; Krishna SR; Hawaldar RR; Gaikwad AB; Sathaye SD; Patil KR
    J Colloid Interface Sci; 2011 Jun; 358(1):238-44. PubMed ID: 21453926
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assembling Bare Au Nanoparticles at Positively Charged Templates.
    Wang W; Zhang H; Kuzmenko I; Mallapragada S; Vaknin D
    Sci Rep; 2016 May; 6():26462. PubMed ID: 27225047
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Effect of Salt Concentration on Adsorption of Low-Charge-Density Polyelectrolytes and Interactions between Polyelectrolyte-Coated Surfaces.
    Rojas OJ; Claesson PM; Muller D; Neuman RD
    J Colloid Interface Sci; 1998 Sep; 205(1):77-88. PubMed ID: 9710501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition.
    Chernyshova IV; Hochella MF; Madden AS
    Phys Chem Chem Phys; 2007 Apr; 9(14):1736-50. PubMed ID: 17396185
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption of nonuniformly charged fullerene-like nanoparticles on planar polyelectrolyte brushes in aqueous solutions.
    Hu Y; Cao D
    Langmuir; 2009 May; 25(9):4965-72. PubMed ID: 19323501
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon nanoparticle surface functionalisation: converting negatively charged sulfonate to positively charged sulfonamide.
    Watkins JD; Lawrence R; Taylor JE; Bull SD; Nelson GW; Foord JS; Wolverson D; Rassaei L; Evans ND; Gascon SA; Marken F
    Phys Chem Chem Phys; 2010 May; 12(18):4872-8. PubMed ID: 20428570
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption of cobalt ferrite nanoparticles within layer-by-layer films: a kinetic study carried out using quartz crystal microbalance.
    Alcantara GB; Paterno LG; Afonso AS; Faria RC; Pereira-da-Silva MA; Morais PC; Soler MA
    Phys Chem Chem Phys; 2011 Dec; 13(48):21233-42. PubMed ID: 22025281
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption of amyloid beta-peptide at polymer surfaces: a neutron reflectivity study.
    Rocha S; Krastev R; Thünemann AF; Pereira MC; Möhwald H; Brezesinski G
    Chemphyschem; 2005 Dec; 6(12):2527-34. PubMed ID: 16284995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of surface charge distribution on the adsorption orientation of proteins to lipid monolayers.
    Tiemeyer S; Paulus M; Tolan M
    Langmuir; 2010 Sep; 26(17):14064-7. PubMed ID: 20707324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorption of trimethyl phosphate on maghemite, hematite, and goethite nanoparticles.
    Mäkie P; Westin G; Persson P; Österlund L
    J Phys Chem A; 2011 Aug; 115(32):8948-59. PubMed ID: 21711003
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA adsorption at liquid/solid interfaces.
    Douarche C; Cortès R; Roser SJ; Sikorav JL; Braslau A
    J Phys Chem B; 2008 Nov; 112(44):13676-9. PubMed ID: 18850736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.