These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22386313)

  • 1. Figure tracking by flies is supported by parallel visual streams.
    Aptekar JW; Shoemaker PA; Frye MA
    Curr Biol; 2012 Mar; 22(6):482-7. PubMed ID: 22386313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method and software for using m-sequences to characterize parallel components of higher-order visual tracking behavior in Drosophila.
    Aptekar JW; Keles MF; Mongeau JM; Lu PM; Frye MA; Shoemaker PA
    Front Neural Circuits; 2014; 8():130. PubMed ID: 25400550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Higher-order figure discrimination in fly and human vision.
    Aptekar JW; Frye MA
    Curr Biol; 2013 Aug; 23(16):R694-700. PubMed ID: 23968927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drosophila Spatiotemporally Integrates Visual Signals to Control Saccades.
    Mongeau JM; Frye MA
    Curr Biol; 2017 Oct; 27(19):2901-2914.e2. PubMed ID: 28943085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The free-flight response of Drosophila to motion of the visual environment.
    Mronz M; Lehmann FO
    J Exp Biol; 2008 Jul; 211(Pt 13):2026-45. PubMed ID: 18552291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric processing of visual motion for simultaneous object and background responses.
    Fenk LM; Poehlmann A; Straw AD
    Curr Biol; 2014 Dec; 24(24):2913-9. PubMed ID: 25454785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Higher-order motion sensitivity in fly visual circuits.
    Lee YJ; Nordström K
    Proc Natl Acad Sci U S A; 2012 May; 109(22):8758-63. PubMed ID: 22586123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired figure-ground discrimination via visual motion smoothing.
    Wu Z; Guo A
    PLoS Comput Biol; 2023 Apr; 19(4):e1011077. PubMed ID: 37083880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive responses of periarcuate pursuit neurons to visual target motion.
    Fukushima K; Yamanobe T; Shinmei Y; Fukushima J
    Exp Brain Res; 2002 Jul; 145(1):104-20. PubMed ID: 12070750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing of retinal and extraretinal signals for memory-guided saccades during smooth pursuit.
    Blohm G; Missal M; Lefèvre P
    J Neurophysiol; 2005 Mar; 93(3):1510-22. PubMed ID: 15483070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peripheral visual circuits functionally segregate motion and phototaxis behaviors in the fly.
    Zhu Y; Nern A; Zipursky SL; Frye MA
    Curr Biol; 2009 Apr; 19(7):613-9. PubMed ID: 19303299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual motion speed determines a behavioral switch from forward flight to expansion avoidance in Drosophila.
    Reiser MB; Dickinson MH
    J Exp Biol; 2013 Feb; 216(Pt 4):719-32. PubMed ID: 23197097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of retinal and extra-retinal motion cues on perceived object motion during self-motion.
    Dyde RT; Harris LR
    J Vis; 2008 Oct; 8(14):5.1-10. PubMed ID: 19146306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dynamic representation of target motion drives predictive smooth pursuit during target blanking.
    Orban de Xivry JJ; Missal M; Lefèvre P
    J Vis; 2008 Nov; 8(15):6.1-13. PubMed ID: 19146290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster.
    Tammero LF; Dickinson MH
    J Exp Biol; 2002 Feb; 205(Pt 3):327-43. PubMed ID: 11854370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A jitter after-effect reveals motion-based stabilization of vision.
    Murakami I; Cavanagh P
    Nature; 1998 Oct; 395(6704):798-801. PubMed ID: 9796813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Figure-ground discrimination behavior in Drosophila. I. Spatial organization of wing-steering responses.
    Fox JL; Aptekar JW; Zolotova NM; Shoemaker PA; Frye MA
    J Exp Biol; 2014 Feb; 217(Pt 4):558-69. PubMed ID: 24198267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotopic temporal integration of visual motion across saccadic eye movements.
    Melcher D; Morrone MC
    Nat Neurosci; 2003 Aug; 6(8):877-81. PubMed ID: 12872128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The visual control of landing and obstacle avoidance in the fruit fly Drosophila melanogaster.
    van Breugel F; Dickinson MH
    J Exp Biol; 2012 Jun; 215(Pt 11):1783-98. PubMed ID: 22573757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observation of ON and OFF pathways in the Drosophila visual system.
    Strother JA; Nern A; Reiser MB
    Curr Biol; 2014 May; 24(9):976-83. PubMed ID: 24704075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.