BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 22386330)

  • 1. Catalysis of copper corrosion products on chlorine decay and HAA formation in simulated distribution systems.
    Zhang H; Andrews SA
    Water Res; 2012 May; 46(8):2665-73. PubMed ID: 22386330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid free chlorine decay in the presence of Cu(OH)2: chemistry and practical implications.
    Nguyen CK; Powers KA; Raetz MA; Parks JL; Edwards MA
    Water Res; 2011 Oct; 45(16):5302-12. PubMed ID: 21868051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of copper(II) and copper oxides on THMs formation in copper pipe.
    Li B; Qu J; Liu H; Hu C
    Chemosphere; 2007 Aug; 68(11):2153-60. PubMed ID: 17363030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The formation and distribution of haloacetic acids in copper pipe during chlorination.
    Li B; Liu R; Liu H; Gu J; Qu J
    J Hazard Mater; 2008 Mar; 152(1):250-8. PubMed ID: 17689009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors affecting catalysis of copper corrosion products in NDMA formation from DMA in simulated premise plumbing.
    Zhang H; Andrews SA
    Chemosphere; 2013 Nov; 93(11):2683-9. PubMed ID: 24041569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper corrosion kinetics and mechanisms in the presence of chlorine and orthophosphate.
    Zhe Y; Pehkonen SO
    Water Sci Technol; 2004; 49(2):73-81. PubMed ID: 14982166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pipe corrosion scales on chlorine dioxide consumption in drinking water distribution systems.
    Zhang Z; Stout JE; Yu VL; Vidic R
    Water Res; 2008 Jan; 42(1-2):129-36. PubMed ID: 17884130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced formation of bromate and brominated disinfection byproducts during chlorination of bromide-containing waters under catalysis of copper corrosion products.
    Hu J; Qiang Z; Dong H; Qu J
    Water Res; 2016 Jul; 98():302-8. PubMed ID: 27110886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fate of THMs and HAAs in low TOC surface water.
    Kim J
    Environ Res; 2009 Feb; 109(2):158-65. PubMed ID: 19135189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of water quality on chlorine demand of corroding copper.
    Lytle DA; Liggett J
    Water Res; 2016 Apr; 92():11-21. PubMed ID: 26826646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors influencing disinfection by-products formation in drinking water of six cities in China.
    Ye B; Wang W; Yang L; Wei J; E X
    J Hazard Mater; 2009 Nov; 171(1-3):147-52. PubMed ID: 19540042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of haloacetic acids from dissolved organic matter fractions during chloramination.
    Hong Y; Song H; Karanfil T
    Water Res; 2013 Mar; 47(3):1147-55. PubMed ID: 23245540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of advanced treatment on chlorine decay in metallic pipes.
    Rossman LA
    Water Res; 2006 Jul; 40(13):2493-502. PubMed ID: 16806395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and fate of haloacetic acids (HAAs) within the water treatment plant.
    Rodriguez MJ; Serodes J; Roy D
    Water Res; 2007 Oct; 41(18):4222-32. PubMed ID: 17604076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of oxoanions on oxidant decay, bromate and brominated disinfection by-product formation during chlorination in the presence of copper corrosion products.
    Fang C; Ding S; Gai S; Xiao R; Wu Y; Geng B; Chu W
    Water Res; 2019 Dec; 166():115087. PubMed ID: 31541789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomistic insights into aqueous corrosion of copper.
    Jeon B; Sankaranarayanan SK; van Duin AC; Ramanathan S
    J Chem Phys; 2011 Jun; 134(23):234706. PubMed ID: 21702575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acids as precursors of trihalomethane and haloacetic acid formation during chlorination.
    Hong HC; Wong MH; Liang Y
    Arch Environ Contam Toxicol; 2009 May; 56(4):638-45. PubMed ID: 18712495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of Cu(II) on the decay of monochloramine.
    Fu J; Qu J; Liu R; Zhao X; Qiang Z
    Chemosphere; 2009 Jan; 74(2):181-6. PubMed ID: 19013632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FTIR evaluation of functional groups involved in the formation of haloacetic acids during the chlorination of raw water.
    Kanokkantapong V; Marhaba TF; Panyapinyophol B; Pavasant P
    J Hazard Mater; 2006 Aug; 136(2):188-96. PubMed ID: 16762496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disinfectant decay and disinfection by-products formation model development: chlorination and ozonation by-products.
    Sohn J; Amy G; Cho J; Lee Y; Yoon Y
    Water Res; 2004 May; 38(10):2461-78. PubMed ID: 15159150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.