These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 223864)
61. Effects of brain-stem stimulation, rapid eye movements and alerting of lateral geniculate body transmission in monkeys. Cohen B; Feldman M; Diamond S Electroencephalogr Clin Neurophysiol; 1969 Nov; 27(5):547. PubMed ID: 4187055 [No Abstract] [Full Text] [Related]
62. Convergence of specific visual and commissural impulses upon inhibitory interneurones in cats visual cortex. Toyama K; Matsunami K Neuroscience; 1976; 1(2):107-12. PubMed ID: 1004705 [No Abstract] [Full Text] [Related]
63. Differential effect of midbrain stimulation on X-sustained and Y-transient neurons in the lateral geniculate nucleus of the cat. Foote WE; Mordes JP; Colby CL; Harrison TA Brain Res; 1977 May; 127(1):153-8. PubMed ID: 861748 [No Abstract] [Full Text] [Related]
64. [Effect of lesions in the geniculate bodies on the visual response in the rat reticular formation]. Felber F; Klingberg F Acta Biol Med Ger; 1975; 34(6):1087-91. PubMed ID: 1199625 [No Abstract] [Full Text] [Related]
65. Conduction velocity as a parameter in the organisation of the afferent relay in the cat's lateral geniculate nucleus. Stone J; Hoffman KP Brain Res; 1971 Sep; 32(2):454-9. PubMed ID: 5134589 [No Abstract] [Full Text] [Related]
66. Biophysical network modeling of the dLGN circuit: Effects of cortical feedback on spatial response properties of relay cells. Martínez-Cañada P; Mobarhan MH; Halnes G; Fyhn M; Morillas C; Pelayo F; Einevoll GT PLoS Comput Biol; 2018 Jan; 14(1):e1005930. PubMed ID: 29377888 [TBL] [Abstract][Full Text] [Related]
67. Cholinergic mechanisms in the reticular control of transmission in the cat lateral geniculate nucleus. Francesconi W; Müller CM; Singer W J Neurophysiol; 1988 Jun; 59(6):1690-718. PubMed ID: 2841431 [TBL] [Abstract][Full Text] [Related]
68. The transmission pathways of acoustic stimuli to the anterior sigmoid gyrus. Sager O; Florea-Ciocoiu V; Nestianu V Electroencephalogr Clin Neurophysiol; 1969 Sep; 27(7):656. PubMed ID: 4187269 [No Abstract] [Full Text] [Related]
69. Organization of visual pathways in normal and visually deprived cats. Sherman SM; Spear PD Physiol Rev; 1982 Apr; 62(2):738-855. PubMed ID: 6280221 [No Abstract] [Full Text] [Related]
70. Photic responses of the basal preoptic area in the cat. Bremer F Brain Res; 1976 Oct; 115(1):145-9. PubMed ID: 974738 [No Abstract] [Full Text] [Related]
71. [Effect of deafferentation of the lateral geniculate body on its background activity]. Liubimov NN; Gadzhieva NA; Kul'gavin LE; Baziian BKh Zh Vyssh Nerv Deiat Im I P Pavlova; 1985; 35(3):504-9. PubMed ID: 4036324 [TBL] [Abstract][Full Text] [Related]
72. Both fast and slow relay cells in lateral geniculate nucleus of rabbits receive recurrent inhibition. Lo FS Brain Res; 1983 Jul; 271(2):335-8. PubMed ID: 6616182 [TBL] [Abstract][Full Text] [Related]
73. Corticofugal feedback improves the timing of retino-geniculate signal transmission. Funke K; Nelle E; Li B; Wörgötter F Neuroreport; 1996 Sep; 7(13):2130-4. PubMed ID: 8930973 [TBL] [Abstract][Full Text] [Related]
74. Identification of X versus Y properties for interneurons in the A-laminae of the cat's lateral geniculate nucleus. Sherman SM; Friedlander MJ Exp Brain Res; 1988; 73(2):384-92. PubMed ID: 3215314 [TBL] [Abstract][Full Text] [Related]
75. Effects of eye movement, brain-stem stimulation, and alertness on transmission through lateral geniculate body of monkey. Cohen B; Feldman M; Diamond SP J Neurophysiol; 1969 Jul; 32(4):583-94. PubMed ID: 4308868 [No Abstract] [Full Text] [Related]
76. Projections from the pontine reticular formation to the lateral geniculate body: autoradiographic demonstration of a pathway that could mediate pontine-geniculate-occipital waves. Robertson RT Exp Neurol; 1981 Aug; 73(2):576-81. PubMed ID: 7262256 [No Abstract] [Full Text] [Related]
77. Immediate effects of total visual deafferentation on single unit activity in the visual cortex of freely behaving cats. I. Tonic excitability changes. Kasamatsu T; Adey WR Exp Brain Res; 1974; 20(2):157-70. PubMed ID: 4365929 [No Abstract] [Full Text] [Related]
78. The origin of the S (slow) potential in the mammalian lateral geniculate nucleus. Kaplan E; Shapley R Exp Brain Res; 1984; 55(1):111-6. PubMed ID: 6086369 [TBL] [Abstract][Full Text] [Related]
79. Modulation of postsynaptic activities of thalamic lateral geniculate neurons by spontaneous changes in number of retinal inputs in chronic cats. 1. Input-output relations. Fourment A; Hirsch JC; Marc ME; Guidet C Neuroscience; 1984 Jun; 12(2):453-64. PubMed ID: 6087199 [TBL] [Abstract][Full Text] [Related]
80. Modulation of visual cortex inhibition during reticular evoked arousal. Feeney DM; Orem JM Physiol Behav; 1972; 9(5):805-8. PubMed ID: 4347656 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]