These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22386516)

  • 1. Effects of lesions of the amygdala central nucleus on autoshaped lever pressing.
    Chang SE; Wheeler DS; Holland PC
    Brain Res; 2012 Apr; 1450():49-56. PubMed ID: 22386516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of nucleus accumbens and basolateral amygdala in autoshaped lever pressing.
    Chang SE; Wheeler DS; Holland PC
    Neurobiol Learn Mem; 2012 May; 97(4):441-51. PubMed ID: 22469749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lesions of the basolateral amygdala disrupt selective aspects of reinforcer representation in rats.
    Blundell P; Hall G; Killcross S
    J Neurosci; 2001 Nov; 21(22):9018-26. PubMed ID: 11698612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of pavlovian-instrumental transfer.
    Corbit LH; Balleine BW
    J Neurosci; 2005 Jan; 25(4):962-70. PubMed ID: 15673677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of amygdala central nucleus in the potentiation of consuming and instrumental lever-pressing for sucrose by cues for the presentation or interruption of sucrose delivery in rats.
    Holland PC; Hsu M
    Behav Neurosci; 2014 Feb; 128(1):71-82. PubMed ID: 24512067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blocking in autoshaped lever-pressing procedures with rats.
    Holland PC; Asem JS; Galvin CP; Keeney CH; Hsu M; Miller A; Zhou V
    Learn Behav; 2014 Mar; 42(1):1-21. PubMed ID: 24002941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociable effects of disconnecting amygdala central nucleus from the ventral tegmental area or substantia nigra on learned orienting and incentive motivation.
    El-Amamy H; Holland PC
    Eur J Neurosci; 2007 Mar; 25(5):1557-67. PubMed ID: 17425582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural correlates of Pavlovian-to-instrumental transfer in the nucleus accumbens shell are selectively potentiated following cocaine self-administration.
    Saddoris MP; Stamatakis A; Carelli RM
    Eur J Neurosci; 2011 Jun; 33(12):2274-87. PubMed ID: 21507084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amygdala central nucleus interacts with dorsolateral striatum to regulate the acquisition of habits.
    Lingawi NW; Balleine BW
    J Neurosci; 2012 Jan; 32(3):1073-81. PubMed ID: 22262905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the nucleus accumbens in instrumental conditioning: Evidence of a functional dissociation between accumbens core and shell.
    Corbit LH; Muir JL; Balleine BW
    J Neurosci; 2001 May; 21(9):3251-60. PubMed ID: 11312310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Outcome-specific Pavlovian-to-instrumental transfer (PIT) with alcohol cues and its extinction.
    Alarcón DE; Delamater AR
    Alcohol; 2019 May; 76():131-146. PubMed ID: 30240809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethanol-associated cues produce general pavlovian-instrumental transfer.
    Corbit LH; Janak PH
    Alcohol Clin Exp Res; 2007 May; 31(5):766-74. PubMed ID: 17378919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopamine receptor blockade attenuates the general incentive motivational effects of noncontingently delivered rewards and reward-paired cues without affecting their ability to bias action selection.
    Ostlund SB; Maidment NT
    Neuropsychopharmacology; 2012 Jan; 37(2):508-19. PubMed ID: 21918507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of different subregions of the basolateral amygdala in cue-induced reinstatement and extinction of food-seeking behavior.
    McLaughlin RJ; Floresco SB
    Neuroscience; 2007 Jun; 146(4):1484-94. PubMed ID: 17449185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of amphetamine sensitization on conditioned inhibition during a Pavlovian-instrumental transfer task in rats.
    Shiflett MW; Riccie M; DiMatteo R
    Psychopharmacology (Berl); 2013 Nov; 230(1):137-47. PubMed ID: 23715640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incentive sensitization by previous amphetamine exposure: increased cue-triggered "wanting" for sucrose reward.
    Wyvell CL; Berridge KC
    J Neurosci; 2001 Oct; 21(19):7831-40. PubMed ID: 11567074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basolateral amygdala lesions impair both cue- and cocaine-induced reinstatement in animals trained on a discriminative stimulus task.
    Yun IA; Fields HL
    Neuroscience; 2003; 121(3):747-57. PubMed ID: 14568033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attenuation of cue-induced heroin-seeking behavior by cannabinoid CB1 antagonist infusions into the nucleus accumbens core and prefrontal cortex, but not basolateral amygdala.
    Alvarez-Jaimes L; Polis I; Parsons LH
    Neuropsychopharmacology; 2008 Sep; 33(10):2483-93. PubMed ID: 18059440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pavlovian-to-instrumental transfer in cocaine seeking rats.
    LeBlanc KH; Ostlund SB; Maidment NT
    Behav Neurosci; 2012 Oct; 126(5):681-9. PubMed ID: 22866668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of orbitofrontal cortex lesions on autoshaped lever pressing and reversal learning.
    Chang SE
    Behav Brain Res; 2014 Oct; 273():52-6. PubMed ID: 25078291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.