These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 22386684)

  • 21. Glycine release provoked by disturbed Na⁺, Na⁺ and Ca²⁺ homeostasis in cerebellar nerve endings: roles of Ca²⁺ channels, Na⁺/Ca²⁺ exchangers and GlyT2 transporter reversal.
    Romei C; Di Prisco S; Raiteri M; Raiteri L
    J Neurochem; 2011 Oct; 119(1):50-63. PubMed ID: 21790607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolated nerve endings (neurosecretosomes) from the posterior pituitary. Partial separation of vasopressin and oxytocin and the isolation of microvesicles.
    Bindler E; Labella FS; Sanwal M
    J Cell Biol; 1967 Jul; 34(1):185-205. PubMed ID: 6040535
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Excitatory versus inhibitory modulation by ATP of neurohypophysial terminal activity in the rat.
    Lemos JR; Wang G
    Exp Physiol; 2000 Mar; 85 Spec No():67S-74S. PubMed ID: 10795908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activation of kappa-opioid receptors inhibits depolarisation-evoked exocytosis but not the rise in intracellular Ca2+ in secretory nerve terminals of the neurohypophysis.
    Kato M; Chapman C; Bicknell RJ
    Brain Res; 1992 Mar; 574(1-2):138-46. PubMed ID: 1353398
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two types of calcium channels coexist in peptide-releasing vertebrate nerve terminals.
    Lemos JR; Nowycky MC
    Neuron; 1989 May; 2(5):1419-26. PubMed ID: 2560641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dendritic release of vasopressin and oxytocin.
    Ludwig M
    J Neuroendocrinol; 1998 Dec; 10(12):881-95. PubMed ID: 9870745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential modulation of N-type calcium channels by micro-opioid receptors in oxytocinergic versus vasopressinergic neurohypophysial terminals.
    Ortiz-Miranda SI; Dayanithi G; Velázquez-Marrero C; Custer EE; Treistman SN; Lemos JR
    J Cell Physiol; 2010 Oct; 225(1):276-88. PubMed ID: 20509142
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrophysiological identification of the functional presynaptic nerve terminals on an isolated single vasopressin neurone of the rat supraoptic nucleus.
    Ohbuchi T; Yokoyama T; Fujihara H; Suzuki H; Ueta Y
    J Neuroendocrinol; 2010 May; 22(5):413-9. PubMed ID: 20163519
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Axonal Endoplasmic Reticulum Ca
    de Juan-Sanz J; Holt GT; Schreiter ER; de Juan F; Kim DS; Ryan TA
    Neuron; 2017 Feb; 93(4):867-881.e6. PubMed ID: 28162809
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vasopressin Neurons Respond to Hyperosmotic Stimulation with Regulatory Volume Increase and Secretory Volume Decrease by Activating Ion Transporters and Ca
    Sato-Numata K; Numata T; Ueta Y; Okada Y
    Cell Physiol Biochem; 2021 Mar; 55(S1):119-134. PubMed ID: 33711228
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple cytosolic calcium buffers in posterior pituitary nerve terminals.
    McMahon SM; Chang CW; Jackson MB
    J Gen Physiol; 2016 Mar; 147(3):243-54. PubMed ID: 26880753
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting of green fluorescent protein to secretory granules in oxytocin magnocellular neurons and its secretion from neurohypophysial nerve terminals in transgenic mice.
    Zhang BJ; Kusano K; Zerfas P; Iacangelo A; Young WS; Gainer H
    Endocrinology; 2002 Mar; 143(3):1036-46. PubMed ID: 11861530
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neuroendocrine signalling: natural variations on a Ca2+ theme.
    Toescu EC; Dayanithi G
    Cell Calcium; 2012; 51(3-4):207-11. PubMed ID: 22385835
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of activity-dependent vasopressin release from neuronal dendrites and axon terminals using sniffer cells.
    Zaelzer C; Gizowski C; Salmon CK; Murai KK; Bourque CW
    J Neurophysiol; 2018 Sep; 120(3):1386-1396. PubMed ID: 29975164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calcium dynamics in the secretory granules of neuroendocrine cells.
    Alvarez J
    Cell Calcium; 2012; 51(3-4):331-7. PubMed ID: 22209697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural Reconstruction of the Perivascular Space in the Adult Mouse Neurohypophysis During an Osmotic Stimulation.
    Nishikawa K; Furube E; Morita S; Horii-Hayashi N; Nishi M; Miyata S
    J Neuroendocrinol; 2017 Feb; 29(2):. PubMed ID: 28072496
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cold-induced release of hormones and proteins from nerve endings isolated from bovine neural lobes.
    Baker RV; Vilhardt H; Hope DB
    J Neurochem; 1975 May; 24(5):1091-3. PubMed ID: 1141893
    [No Abstract]   [Full Text] [Related]  

  • 38. Brain-derived neurotrophic factor in the brain of Xenopus laevis may act as a pituitary neurohormone together with mesotocin.
    Calle M; Wang L; Kuijpers FJ; Cruijsen PM; Arckens L; Roubos EW
    J Neuroendocrinol; 2006 Jun; 18(6):454-65. PubMed ID: 16684135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calcium signaling in neurosecretory terminals and pituicytes.
    Bicknell RJ; Boersma CJ; Van Leeuwen FW; Mason WT
    Ann N Y Acad Sci; 1993 Jul; 689():177-82. PubMed ID: 8396865
    [No Abstract]   [Full Text] [Related]  

  • 40. Calcium-channel subtypes in the somata and axon terminals of magnocellular neurosecretory cells.
    Fisher TE; Bourque CW
    Trends Neurosci; 1996 Oct; 19(10):440-4. PubMed ID: 8888522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.