BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 22386728)

  • 1. In vivo efficacy of the diuretic agent ethacrynic acid against multiple myeloma.
    Kim Y; Gast SM; Endo T; Lu D; Carson D; Schmidt-Wolf IG
    Leuk Res; 2012 May; 36(5):598-600. PubMed ID: 22386728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased in vivo efficacy of lenalidomide and thalidomide by addition of ethacrynic acid.
    Schmidt M; Kim Y; Gast SM; Endo T; Lu D; Carson D; Schmidt-Wolf IG
    In Vivo; 2011; 25(3):325-33. PubMed ID: 21576405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the Wnt/beta-catenin pathway with the antifungal agent ciclopirox olamine in a murine myeloma model.
    Kim Y; Schmidt M; Endo T; Lu D; Carson D; Schmidt-Wolf IG
    In Vivo; 2011; 25(6):887-93. PubMed ID: 22021681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo efficacy of griseofulvin against multiple myeloma.
    Kim Y; Alpmann P; Blaum-Feder S; Krämer S; Endo T; Lu D; Carson D; Schmidt-Wolf IG
    Leuk Res; 2011 Aug; 35(8):1070-3. PubMed ID: 21112630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased in vivo efficacy of lenalidomide by addition of piroctone olamine.
    Kim Y; Alpmann P; Blaum-Feder S; Krämer S; Endo T; Lu D; Carson D; Schmidt-Wolf IG
    In Vivo; 2011; 25(1):99-103. PubMed ID: 21282741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro efficacy of cinnarizine against lymphoma and multiple myeloma.
    Schmeel LC; Schmeel FC; Kim Y; Blaum-Feder S; Endo T; Schmidt-Wolf IG
    Anticancer Res; 2015 Feb; 35(2):835-41. PubMed ID: 25667464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting the Wnt/beta-catenin pathway in multiple myeloma.
    Schmeel LC; Schmeel FC; Kim Y; Endo T; Lu D; Schmidt-Wolf IG
    Anticancer Res; 2013 Nov; 33(11):4719-26. PubMed ID: 24222106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting Wnt pathway in lymphoma and myeloma cells.
    Schmidt M; Sievers E; Endo T; Lu D; Carson D; Schmidt-Wolf IG
    Br J Haematol; 2009 Mar; 144(5):796-8. PubMed ID: 19036118
    [No Abstract]   [Full Text] [Related]  

  • 9. beta-catenin small interfering RNA successfully suppressed progression of multiple myeloma in a mouse model.
    Ashihara E; Kawata E; Nakagawa Y; Shimazaski C; Kuroda J; Taniguchi K; Uchiyama H; Tanaka R; Yokota A; Takeuchi M; Kamitsuji Y; Inaba T; Taniwaki M; Kimura S; Maekawa T
    Clin Cancer Res; 2009 Apr; 15(8):2731-8. PubMed ID: 19351774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination therapy with interleukin-6 receptor superantagonist Sant7 and dexamethasone induces antitumor effects in a novel SCID-hu In vivo model of human multiple myeloma.
    Tassone P; Neri P; Burger R; Savino R; Shammas M; Catley L; Podar K; Chauhan D; Masciari S; Gozzini A; Tagliaferri P; Venuta S; Munshi NC; Anderson KC
    Clin Cancer Res; 2005 Jun; 11(11):4251-8. PubMed ID: 15930364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Severe combined immunodeficiency (SCID) mouse modeling of P-glycoprotein chemosensitization in multidrug-resistant human myeloma xenografts.
    Bellamy WT; Odeleye A; Huizenga E; Dalton WS; Weinstein RS; Grogan TM
    Clin Cancer Res; 1995 Dec; 1(12):1563-70. PubMed ID: 9815957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Piceatannol exhibits selective toxicity to multiple myeloma cells and influences the Wnt/ beta-catenin pathway.
    Schmeel FC; Schmeel LC; Kim Y; Schmidt-Wolf IG
    Hematol Oncol; 2014 Dec; 32(4):197-204. PubMed ID: 24470348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Monoclonal antibody against brain derived neurotrophic factor inhibits myeloma growth and angiogenesis in the xenograft NOD/SCID animal model].
    Wang YD; Hu Y; Zhang L; Huang J; Sun CY
    Zhonghua Xue Ye Xue Za Zhi; 2007 Oct; 28(10):659-63. PubMed ID: 18399169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Fc portion of UV3, an anti-CD54 monoclonal antibody, is critical for its antitumor activity in SCID mice with human multiple myeloma or lymphoma cell lines.
    Coleman EJ; Brooks KJ; Smallshaw JE; Vitetta ES
    J Immunother; 2006; 29(5):489-98. PubMed ID: 16971805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic use of immunomodulatory drugs in the treatment of multiple myeloma.
    Raje N; Hideshima T; Anderson KC
    Expert Rev Anticancer Ther; 2006 Sep; 6(9):1239-47. PubMed ID: 17020458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review of therapy for relapsed/refractory multiple myeloma: focus on lenalidomide.
    Mariz JM; Esteves GV
    Curr Opin Oncol; 2012 Jan; 24 Suppl 2():S3-11. PubMed ID: 22245806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dkk1-induced inhibition of Wnt signaling in osteoblast differentiation is an underlying mechanism of bone loss in multiple myeloma.
    Qiang YW; Barlogie B; Rudikoff S; Shaughnessy JD
    Bone; 2008 Apr; 42(4):669-80. PubMed ID: 18294945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of the mevalonate pathway potentiates the effects of lenalidomide in myeloma.
    van der Spek E; Bloem AC; Lokhorst HM; van Kessel B; Bogers-Boer L; van de Donk NW
    Leuk Res; 2009 Jan; 33(1):100-8. PubMed ID: 18621417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lenalidomide: new drug. Myeloma: many questions remain unanswered.
    Prescrire Int; 2008 Dec; 17(98):230-2. PubMed ID: 19422142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thalidomide and lenalidomide in multiple myeloma.
    Mazumder A; Jagannath S
    Best Pract Res Clin Haematol; 2006; 19(4):769-80. PubMed ID: 16997182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.