These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 223869)

  • 1. Biochemical studies of pigments from a pathogenic fungus; Microsporum cookei. VI. Formation of a xanthomegnin-bypass to the mitochondrial electron transport system.
    Kawai K; Nozawa Y
    Experientia; 1979 Jun; 35(6):721-2. PubMed ID: 223869
    [No Abstract]   [Full Text] [Related]  

  • 2. Biochemical studies of pigments from a pathogenic fungus Microsporum cookei. V. Evidence for the transmembrane permeability of xanthomegnin across phospholipid bilayer membranes.
    Kawai K; Akita T; Nozawa Y
    Experientia; 1978 Aug; 34(8):977-8. PubMed ID: 212291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical studies of pigments from a pathogenic fungus Microsporum cookei. III. Comparison of the effects of xanthomegnin and O-methylxanthomegnin on the oxidative phosphorylation of rat liver mitochondria.
    Kawai K; Akita T; Nishibe S; Nozawa Y; Ogihara Y; Ito Y
    J Biochem; 1976 Jan; 79(1):145-52. PubMed ID: 939756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical studies of pigments from the pathogenic fungus, Microsporum cookei.
    Ito Y; Kawai K; Nozawa Y
    J Biochem; 1973 Oct; 74(4):805-10. PubMed ID: 4271697
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of naphthoquinone pigment, xanthomegnin from Microsporum cookei on the respiration of rat liver mitochondria.
    Ito Y; Nozawa Y; Kawai K
    Experientia; 1970 Aug; 26(8):826-7. PubMed ID: 5451999
    [No Abstract]   [Full Text] [Related]  

  • 6. The interaction of a quinone pigment, xanthomegnin, with the mitochondrial respiratory chain.
    Kawai K; Cowger ML
    Res Commun Chem Pathol Pharmacol; 1981 Jun; 32(3):499-514. PubMed ID: 7268194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of quinone pigments from Microsporum cookei by thin-layer chromatography.
    Nozawa Y; Ito Y
    Experientia; 1970; 26(7):803-4. PubMed ID: 5431166
    [No Abstract]   [Full Text] [Related]  

  • 8. Mg(2+) induces intermembrane electron transport by cytochrome c desorption in mitochondria with the ruptured outer membrane.
    Lemeshko VV
    FEBS Lett; 2000 Apr; 472(1):5-8. PubMed ID: 10781794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermembrane electron transfer in mitochondrial and microsomal systems.
    Archakov AI; Karyakin AV; Skulachev VP
    FEBS Lett; 1974 Feb; 39(2):239-42. PubMed ID: 4368834
    [No Abstract]   [Full Text] [Related]  

  • 10. Reverse electron transport effects on NADH formation and metmyoglobin reduction.
    Belskie KM; Van Buiten CB; Ramanathan R; Mancini RA
    Meat Sci; 2015 Jul; 105():89-92. PubMed ID: 25828162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional and structural changes in liver mitochondria of rats due to CC14 intoxication. I. Studies on state of electron-transport chain.
    Lyachovich VV; Mishin VM; Dolgov AV; Tsyrlov IB
    Biochem Pharmacol; 1971 Jul; 20(7):1437-41. PubMed ID: 4355301
    [No Abstract]   [Full Text] [Related]  

  • 12. Ruthenium red as a carrier of electrons between external NADH and cytochrome c in rat liver mitochondria.
    Schwerzmann K; Gazzotti P; Carafoli E
    Biochem Biophys Res Commun; 1976 Apr; 69(3):812-5. PubMed ID: 178317
    [No Abstract]   [Full Text] [Related]  

  • 13. Mitochondrial membrane potential supported by exogenous cytochrome c oxidation mimics the early stages of apoptosis.
    La Piana G; Fransvea E; Marzulli D; Lofrumento NE
    Biochem Biophys Res Commun; 1998 May; 246(2):556-61. PubMed ID: 9610401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular control of mitochondrial respiration.
    Wilson DF; Erecińska M; Stubbs M; Lindsay JG; Owen CS
    Adv Exp Med Biol; 1976; 75():137-44. PubMed ID: 189583
    [No Abstract]   [Full Text] [Related]  

  • 15. Oxidation and reduction of exogenous cytochrome c by the activity of the respiratory chain.
    Lofrumento NE; Marzulli D; Cafagno L; La Piana G; Cipriani T
    Arch Biochem Biophys; 1991 Jul; 288(1):293-301. PubMed ID: 1654829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of cytochrome c-mediated extramitochondrial NADH oxidation by contact site density.
    Marzulli D; La Piana G; Fransvea E; Lofrumento NE
    Biochem Biophys Res Commun; 1999 Jun; 259(2):325-30. PubMed ID: 10362507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton translocation linked to the activity of the bi-trans-membrane electron transport chain.
    Marzulli D; La Piana G; Cafagno L; Fransvea E; Lofrumento NE
    Arch Biochem Biophys; 1995 May; 319(1):36-48. PubMed ID: 7771804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP synthesis during exogenous NADH oxidation. A reappraisal.
    Bernardi P; Azzone GF
    Biochim Biophys Acta; 1982 Jan; 679(1):19-27. PubMed ID: 6275889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunological similarity of the NADH-cytochrome c electron transport system in microsomes, Golgi complex and mitochondrial outer membrane of rat liver cells.
    Borgese N; Meldolesi J
    FEBS Lett; 1976 Apr; 63(2):231-4. PubMed ID: 177314
    [No Abstract]   [Full Text] [Related]  

  • 20. Antibiotic mucidin, a new antimycin A-like inhibitor of electron transport in rat liver mitochondria.
    Subík J; Behún M; Musílek V
    Biochem Biophys Res Commun; 1974 Mar; 57(1):17-22. PubMed ID: 4364001
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.