These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 22387015)
1. Bent bone dysplasia-FGFR2 type, a distinct skeletal disorder, has deficient canonical FGF signaling. Merrill AE; Sarukhanov A; Krejci P; Idoni B; Camacho N; Estrada KD; Lyons KM; Deixler H; Robinson H; Chitayat D; Curry CJ; Lachman RS; Wilcox WR; Krakow D Am J Hum Genet; 2012 Mar; 90(3):550-7. PubMed ID: 22387015 [TBL] [Abstract][Full Text] [Related]
2. FGFR2 mutations in bent bone dysplasia syndrome activate nucleolar stress and perturb cell fate determination. Neben CL; Tuzon CT; Mao X; Lay FD; Merrill AE Hum Mol Genet; 2017 Sep; 26(17):3253-3270. PubMed ID: 28595297 [TBL] [Abstract][Full Text] [Related]
3. Bent bone dysplasia syndrome reveals nucleolar activity for FGFR2 in ribosomal DNA transcription. Neben CL; Idoni B; Salva JE; Tuzon CT; Rice JC; Krakow D; Merrill AE Hum Mol Genet; 2014 Nov; 23(21):5659-71. PubMed ID: 24908667 [TBL] [Abstract][Full Text] [Related]
4. Clinical and radiographic delineation of Bent Bone Dysplasia-FGFR2 type or Bent Bone Dysplasia with Distinctive Clavicles and Angel-shaped Phalanges. Krakow D; Cohn DH; Wilcox WR; Noh GJ; Raffel LJ; Sarukhanov A; Ivanova MH; Danielpour M; Grange DK; Elliott AM; Bernstein JA; Rimoin DL; Merrill AE; Lachman RS Am J Med Genet A; 2016 Oct; 170(10):2652-61. PubMed ID: 27240702 [TBL] [Abstract][Full Text] [Related]
5. Bent bone dysplasia (BBD)-FGFR2 type: the radiologic manifestations in early gestation. Handa A; Okajima Y; Izumi N; Yamanaka M; Kurihara Y Pediatr Radiol; 2016 Feb; 46(2):296-9. PubMed ID: 26446305 [TBL] [Abstract][Full Text] [Related]
6. The postnatal features of bent bone dysplasia-FGFR2 type. Scott RH; Meaney C; Jenkins L; Calder A; Hurst JA Clin Dysmorphol; 2014 Jan; 23(1):8-11. PubMed ID: 24300289 [No Abstract] [Full Text] [Related]
7. A new case of bent bone dysplasia--FGFR2 type and review of the literature. Stichelbout M; Dieux-Coeslier A; Clouqueur E; Collet C; Petit F Am J Med Genet A; 2016 Mar; 170(3):785-9. PubMed ID: 26573129 [No Abstract] [Full Text] [Related]
8. A Pro253Arg mutation in fibroblast growth factor receptor 2 (Fgfr2) causes skeleton malformation mimicking human Apert syndrome by affecting both chondrogenesis and osteogenesis. Yin L; Du X; Li C; Xu X; Chen Z; Su N; Zhao L; Qi H; Li F; Xue J; Yang J; Jin M; Deng C; Chen L Bone; 2008 Apr; 42(4):631-43. PubMed ID: 18242159 [TBL] [Abstract][Full Text] [Related]
9. Craniosynostosis-associated Fgfr2(C342Y) mutant bone marrow stromal cells exhibit cell autonomous abnormalities in osteoblast differentiation and bone formation. Liu J; Kwon TG; Nam HK; Hatch NE Biomed Res Int; 2013; 2013():292506. PubMed ID: 23762837 [TBL] [Abstract][Full Text] [Related]
10. Mandibular dysmorphology due to abnormal embryonic osteogenesis in FGFR2-related craniosynostosis mice. Motch Perrine SM; Wu M; Stephens NB; Kriti D; van Bakel H; Jabs EW; Richtsmeier JT Dis Model Mech; 2019 May; 12(5):. PubMed ID: 31064775 [TBL] [Abstract][Full Text] [Related]
11. A Ser252Trp mutation in fibroblast growth factor receptor 2 (FGFR2) mimicking human Apert syndrome reveals an essential role for FGF signaling in the regulation of endochondral bone formation. Chen P; Zhang L; Weng T; Zhang S; Sun S; Chang M; Li Y; Zhang B; Zhang L PLoS One; 2014; 9(1):e87311. PubMed ID: 24489893 [TBL] [Abstract][Full Text] [Related]
12. Dura in the pathogenesis of syndromic craniosynostosis: fibroblast growth factor receptor 2 mutations in dural cells promote osteogenic proliferation and differentiation of osteoblasts. Ang BU; Spivak RM; Nah HD; Kirschner RE J Craniofac Surg; 2010 Mar; 21(2):462-7. PubMed ID: 20489451 [TBL] [Abstract][Full Text] [Related]
13. Craniofacial divergence by distinct prenatal growth patterns in Fgfr2 mutant mice. Motch Perrine SM; Cole TM; Martínez-Abadías N; Aldridge K; Jabs EW; Richtsmeier JT BMC Dev Biol; 2014 Feb; 14():8. PubMed ID: 24580805 [TBL] [Abstract][Full Text] [Related]
14. FGF signaling in the osteoprogenitor lineage non-autonomously regulates postnatal chondrocyte proliferation and skeletal growth. Karuppaiah K; Yu K; Lim J; Chen J; Smith C; Long F; Ornitz DM Development; 2016 May; 143(10):1811-22. PubMed ID: 27052727 [TBL] [Abstract][Full Text] [Related]
15. Crouzon syndrome and Bent bone dysplasia associated with mutations at the same Tyr-381 residue in FGFR2 gene. Collet C; Alessandri JL; Arnaud E; Balu M; Daire VC; Di Rocco F Clin Genet; 2014 Jun; 85(6):598-9. PubMed ID: 23808569 [No Abstract] [Full Text] [Related]
16. Signaling by fibroblast growth factors (FGF) and fibroblast growth factor receptor 2 (FGFR2)-activating mutations blocks mineralization and induces apoptosis in osteoblasts. Mansukhani A; Bellosta P; Sahni M; Basilico C J Cell Biol; 2000 Jun; 149(6):1297-308. PubMed ID: 10851026 [TBL] [Abstract][Full Text] [Related]
17. Further analysis of the Crouzon mouse: effects of the FGFR2(C342Y) mutation are cranial bone-dependent. Liu J; Nam HK; Wang E; Hatch NE Calcif Tissue Int; 2013 May; 92(5):451-66. PubMed ID: 23358860 [TBL] [Abstract][Full Text] [Related]
19. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Yu K; Xu J; Liu Z; Sosic D; Shao J; Olson EN; Towler DA; Ornitz DM Development; 2003 Jul; 130(13):3063-74. PubMed ID: 12756187 [TBL] [Abstract][Full Text] [Related]
20. Functional characterization of a novel FGFR2 mutation, E731K, in craniosynostosis. Park J; Park OJ; Yoon WJ; Kim HJ; Choi KY; Cho TJ; Ryoo HM J Cell Biochem; 2012 Feb; 113(2):457-64. PubMed ID: 21928350 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]