BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22387068)

  • 1. Interleukin 1 receptor contributes to methamphetamine- and sleep deprivation-induced hypersomnolence.
    Schmidt MA; Wisor JP
    Neurosci Lett; 2012 Apr; 513(2):209-13. PubMed ID: 22387068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebral microglia mediate sleep/wake and neuroinflammatory effects of methamphetamine.
    Wisor JP; Schmidt MA; Clegern WC
    Brain Behav Immun; 2011 May; 25(4):767-76. PubMed ID: 21333736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleep-wake behavior and responses to sleep deprivation of mice lacking both interleukin-1 beta receptor 1 and tumor necrosis factor-alpha receptor 1.
    Baracchi F; Opp MR
    Brain Behav Immun; 2008 Aug; 22(6):982-93. PubMed ID: 18329246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Armodafinil, the R-enantiomer of modafinil: wake-promoting effects and pharmacokinetic profile in the rat.
    Wisor JP; Dement WC; Aimone L; Williams M; Bozyczko-Coyne D
    Pharmacol Biochem Behav; 2006 Nov; 85(3):492-9. PubMed ID: 17134745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of 5-HT2 receptor subtypes to sleep-wakefulness and respiratory control, and functional adaptations in knock-out mice lacking 5-HT2A receptors.
    Popa D; Léna C; Fabre V; Prenat C; Gingrich J; Escourrou P; Hamon M; Adrien J
    J Neurosci; 2005 Dec; 25(49):11231-8. PubMed ID: 16339018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modafinil induces wakefulness without intensifying motor activity or subsequent rebound hypersomnolence in the rat.
    Edgar DM; Seidel WF
    J Pharmacol Exp Ther; 1997 Nov; 283(2):757-69. PubMed ID: 9353396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fos expression in orexin neurons varies with behavioral state.
    Estabrooke IV; McCarthy MT; Ko E; Chou TC; Chemelli RM; Yanagisawa M; Saper CB; Scammell TE
    J Neurosci; 2001 Mar; 21(5):1656-62. PubMed ID: 11222656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sleep and body temperature in TNFα knockout mice: The effects of sleep deprivation, β3-AR stimulation and exogenous TNFα.
    Szentirmai É; Kapás L
    Brain Behav Immun; 2019 Oct; 81():260-271. PubMed ID: 31220563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of i.c.v. administration of interleukin-1 on sleep and body temperature of interleukin-6-deficient mice.
    Olivadoti MD; Opp MR
    Neuroscience; 2008 Apr; 153(1):338-48. PubMed ID: 18367337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic lesioning of histamine neurons increases sleep-wake fragmentation and reveals their contribution to modafinil-induced wakefulness.
    Yu X; Ma Y; Harding EC; Yustos R; Vyssotski AL; Franks NP; Wisden W
    Sleep; 2019 May; 42(5):. PubMed ID: 30722053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sleep regulation in the Djungarian hamster: comparison of the dynamics leading to the slow-wave activity increase after sleep deprivation and daily torpor.
    Deboer T; Tobler I
    Sleep; 2003 Aug; 26(5):567-72. PubMed ID: 12938809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sleep-wake behavior and responses of interleukin-6-deficient mice to sleep deprivation.
    Morrow JD; Opp MR
    Brain Behav Immun; 2005 Jan; 19(1):28-39. PubMed ID: 15581736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the sleep-wake patterns in mice lacking fatty acid amide hydrolase.
    Huitron-Resendiz S; Sanchez-Alavez M; Wills DN; Cravatt BF; Henriksen SJ
    Sleep; 2004 Aug; 27(5):857-65. PubMed ID: 15453543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toll-like receptor 4 is a regulator of monocyte and electroencephalographic responses to sleep loss.
    Wisor JP; Clegern WC; Schmidt MA
    Sleep; 2011 Oct; 34(10):1335-45. PubMed ID: 21966065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interleukin-1 receptor accessory proteins are required for normal homeostatic responses to sleep deprivation.
    Nguyen J; Gibbons CM; Dykstra-Aiello C; Ellingsen R; Koh KMS; Taishi P; Krueger JM
    J Appl Physiol (1985); 2019 Sep; 127(3):770-780. PubMed ID: 31295066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histamine from brain resident MAST cells promotes wakefulness and modulates behavioral states.
    Chikahisa S; Kodama T; Soya A; Sagawa Y; Ishimaru Y; Séi H; Nishino S
    PLoS One; 2013; 8(10):e78434. PubMed ID: 24205232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for neuroinflammatory and microglial changes in the cerebral response to sleep loss.
    Wisor JP; Schmidt MA; Clegern WC
    Sleep; 2011 Mar; 34(3):261-72. PubMed ID: 21358843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of amphetamine and modafinil on the sleep/wake cycle during experimental hypersomnia induced by sleep deprivation in the cat.
    Lin JS; Gervasoni D; Hou Y; Vanni-Mercier G; Rambert F; Frydman A; Jouvet M
    J Sleep Res; 2000 Mar; 9(1):89-96. PubMed ID: 10733694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective contributions of neuronal and astroglial interleukin-1 receptor 1 to the regulation of sleep.
    Ingiosi AM; Raymond RM; Pavlova MN; Opp MR
    Brain Behav Immun; 2015 Aug; 48():244-57. PubMed ID: 25849975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of histamine H1-receptor on behavioral states and wake maintenance during deficiency of a brain activating system: A study using a knockout mouse model.
    Parmentier R; Zhao Y; Perier M; Akaoka H; Lintunen M; Hou Y; Panula P; Watanabe T; Franco P; Lin JS
    Neuropharmacology; 2016 Jul; 106():20-34. PubMed ID: 26723880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.