These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22387068)

  • 21. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation.
    Cui SY; Li SJ; Cui XY; Zhang XQ; Yu B; Sheng ZF; Huang YL; Cao Q; Xu YP; Lin ZG; Yang G; Song JZ; Ding H; Wang ZJ; Zhang YH
    J Neurochem; 2016 Feb; 136(3):609-19. PubMed ID: 26558357
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impaired wake-promoting mechanisms in ghrelin receptor-deficient mice.
    Esposito M; Pellinen J; Kapás L; Szentirmai É
    Eur J Neurosci; 2012 Jan; 35(2):233-43. PubMed ID: 22211783
    [TBL] [Abstract][Full Text] [Related]  

  • 23. cGMP-dependent protein kinase type I is implicated in the regulation of the timing and quality of sleep and wakefulness.
    Langmesser S; Franken P; Feil S; Emmenegger Y; Albrecht U; Feil R
    PLoS One; 2009; 4(1):e4238. PubMed ID: 19156199
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of serotonergic activation by 5-hydroxytryptophan on sleep and body temperature of C57BL/6J and interleukin-6-deficient mice are dose and time related.
    Morrow JD; Vikraman S; Imeri L; Opp MR
    Sleep; 2008 Jan; 31(1):21-33. PubMed ID: 18220075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sleep Homeostatic and Waking Behavioral Phenotypes in
    Grønli J; Clegern WC; Schmidt MA; Nemri RS; Rempe MJ; Gallitano AL; Wisor JP
    Sleep; 2016 Dec; 39(12):2189-2199. PubMed ID: 28057087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Off-target potential of AMN082 on sleep EEG and related physiological variables: Evidence from mGluR7 (-/-) mice.
    Ahnaou A; Raeyemaekers L; Huysmans H; Drinkenburg WHIM
    Behav Brain Res; 2016 Sep; 311():287-297. PubMed ID: 27211063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CSF histamine levels in rats reflect the central histamine neurotransmission.
    Soya A; Song YH; Kodama T; Honda Y; Fujiki N; Nishino S
    Neurosci Lett; 2008 Jan; 430(3):224-9. PubMed ID: 18077091
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compensatory sleep responses to wakefulness induced by the dopamine autoreceptor antagonist (-)DS121.
    Olive MF; Seidel WF; Edgar DM
    J Pharmacol Exp Ther; 1998 Jun; 285(3):1073-83. PubMed ID: 9618410
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contribution of transcriptional and translational mechanisms to the recovery aspect of sleep regulation.
    Rachalski A; Freyburger M; Mongrain V
    Ann Med; 2014 Mar; 46(2):62-72. PubMed ID: 24428734
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sleep and Wakefulness Are Controlled by Ventral Medial Midbrain/Pons GABAergic Neurons in Mice.
    Takata Y; Oishi Y; Zhou XZ; Hasegawa E; Takahashi K; Cherasse Y; Sakurai T; Lazarus M
    J Neurosci; 2018 Nov; 38(47):10080-10092. PubMed ID: 30282729
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ATP and the purine type 2 X7 receptor affect sleep.
    Krueger JM; Taishi P; De A; Davis CJ; Winters BD; Clinton J; Szentirmai E; Zielinski MR
    J Appl Physiol (1985); 2010 Nov; 109(5):1318-27. PubMed ID: 20829501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The roles of dopamine transport inhibition and dopamine release facilitation in wake enhancement and rebound hypersomnolence induced by dopaminergic agents.
    Gruner JA; Marcy VR; Lin YG; Bozyczko-Coyne D; Marino MJ; Gasior M
    Sleep; 2009 Nov; 32(11):1425-38. PubMed ID: 19928382
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sleep and wakefulness in c-fos and fos B gene knockout mice.
    Shiromani PJ; Basheer R; Thakkar J; Wagner D; Greco MA; Charness ME
    Brain Res Mol Brain Res; 2000 Aug; 80(1):75-87. PubMed ID: 11039731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The time course of sigma activity and slow-wave activity during NREMS in cortical and thalamic EEG of the cat during baseline and after 12 hours of wakefulness.
    Lancel M; van Riezen H; Glatt A
    Brain Res; 1992 Nov; 596(1-2):285-95. PubMed ID: 1467989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sex differences in susceptibility to oxidative injury and sleepiness from intermittent hypoxia.
    Sanfilippo-Cohn B; Lai S; Zhan G; Fenik P; Pratico D; Mazza E; Veasey SC
    Sleep; 2006 Feb; 29(2):152-9. PubMed ID: 16494082
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disrupted sleep-wake regulation in type 1 equilibrative nucleoside transporter knockout mice.
    Kim T; Ramesh V; Dworak M; Choi DS; McCarley RW; Kalinchuk AV; Basheer R
    Neuroscience; 2015 Sep; 303():211-9. PubMed ID: 26143012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Blockade of the metabotropic glutamate (mGluR2) modulates arousal through vigilance states transitions: evidence from sleep-wake EEG in rodents.
    Ahnaou A; Ver Donck L; Drinkenburg WH
    Behav Brain Res; 2014 Aug; 270():56-67. PubMed ID: 24821401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of serotonin 5-HT7 receptor in regulating sleep and wakefulness.
    Monti JM; Jantos H
    Rev Neurosci; 2014; 25(3):429-37. PubMed ID: 24681431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diurnal variation of lipopolysaccharide-induced alterations in sleep and body temperature of interleukin-6-deficient mice.
    Morrow JD; Opp MR
    Brain Behav Immun; 2005 Jan; 19(1):40-51. PubMed ID: 15581737
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wake-promoting effects of ONO-4127Na, a prostaglandin DP1 receptor antagonist, in hypocretin/orexin deficient narcoleptic mice.
    Sagawa Y; Sato M; Sakai N; Chikahisa S; Chiba S; Maruyama T; Yamamoto J; Nishino S
    Neuropharmacology; 2016 Nov; 110(Pt A):268-276. PubMed ID: 27474349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.