BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22387617)

  • 1. Metabolomics reveals the metabolic map of procainamide in humans and mice.
    Li F; Patterson AD; Krausz KW; Dick B; Frey FJ; Gonzalez FJ; Idle JR
    Biochem Pharmacol; 2012 May; 83(10):1435-44. PubMed ID: 22387617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of CYP2D6 activity in the N-oxidation of procainamide in man.
    Lessard E; Hamelin BA; Labbé L; O'Hara G; Bélanger PM; Turgeon J
    Pharmacogenetics; 1999 Dec; 9(6):683-96. PubMed ID: 10634131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive understanding of thioTEPA metabolism in the mouse using UPLC-ESI-QTOFMS-based metabolomics.
    Li F; Patterson AD; Höfer CC; Krausz KW; Gonzalez FJ; Idle JR
    Biochem Pharmacol; 2011 Apr; 81(8):1043-53. PubMed ID: 21300029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic profiling of dehydrodiisoeugenol using xenobiotic metabolomics.
    Lv QQ; Yang XN; Yan DM; Liang WQ; Liu HN; Yang XW; Li F
    J Pharm Biomed Anal; 2017 Oct; 145():725-733. PubMed ID: 28806569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic map of osthole and its effect on lipids.
    Zhao Q; Li XM; Liu HN; Gonzalez FJ; Li F
    Xenobiotica; 2018 Mar; 48(3):285-299. PubMed ID: 28287022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A metabolomic perspective of pazopanib-induced acute hepatotoxicity in mice.
    Wang YK; Yang XN; Liang WQ; Xiao Y; Zhao Q; Xiao XR; Gonzalez FJ; Li F
    Xenobiotica; 2019 Jun; 49(6):655-670. PubMed ID: 29897827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of procainamide to a hydroxylamine by rat and human hepatic microsomes.
    Uetrecht JP; Sweetman BJ; Woosley RL; Oates JA
    Drug Metab Dispos; 1984; 12(1):77-81. PubMed ID: 6141917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of CYP2D6 in the N-hydroxylation of procainamide.
    Lessard E; Fortin A; Bélanger PM; Beaune P; Hamelin BA; Turgeon J
    Pharmacogenetics; 1997 Oct; 7(5):381-90. PubMed ID: 9352574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative metabolism of cyclophosphamide and ifosfamide in the mouse using UPLC-ESI-QTOFMS-based metabolomics.
    Li F; Patterson AD; Höfer CC; Krausz KW; Gonzalez FJ; Idle JR
    Biochem Pharmacol; 2010 Oct; 80(7):1063-74. PubMed ID: 20541539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The implications of procainamide metabolism to its induction of lupus.
    Uetrecht JP; Freeman RW; Woosley RL
    Arthritis Rheum; 1981 Aug; 24(8):994-1003. PubMed ID: 6169352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolomics reveals the role of isopentenyl group in coumarins metabolism.
    Ma XF; Zhao Q; Cheng Y; Yan DM; Zhu WF; Li F
    Biomed Chromatogr; 2022 Jan; 36(1):e5239. PubMed ID: 34494281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolomics reveals trichloroacetate as a major contributor to trichloroethylene-induced metabolic alterations in mouse urine and serum.
    Fang ZZ; Krausz KW; Tanaka N; Li F; Qu A; Idle JR; Gonzalez FJ
    Arch Toxicol; 2013 Nov; 87(11):1975-1987. PubMed ID: 23575800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of amiodarone metabolites in rats using UPLC-ESI-QTOFMS-based untargeted metabolomics approach.
    Jeong ES; Kim G; Yim D; Moon KS; Lee SJ; Shin JG; Kim DH
    J Toxicol Environ Health A; 2018; 81(12):481-492. PubMed ID: 29641932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical investigations of immunologically reactive procainamide metabolites.
    Wheeler JF; Lunte CE; Zimmer H; Heineman WR
    J Pharm Biomed Anal; 1990; 8(2):143-50. PubMed ID: 2094415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of metabolically derived nitroprocainamide in the urine of procainamide-dosed humans and rats by liquid chromatography with electrochemical detection.
    Wheeler JF; Adams LE; Mongey AB; Roberts SM; Heineman WR; Hess EV
    Drug Metab Dispos; 1991; 19(3):691-5. PubMed ID: 1680638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The metabolomics of (+/-)-arecoline 1-oxide in the mouse and its formation by human flavin-containing monooxygenases.
    Giri S; Krausz KW; Idle JR; Gonzalez FJ
    Biochem Pharmacol; 2007 Feb; 73(4):561-73. PubMed ID: 17123469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aberrant lipid metabolism in hepatocellular carcinoma revealed by plasma metabolomics and lipid profiling.
    Patterson AD; Maurhofer O; Beyoglu D; Lanz C; Krausz KW; Pabst T; Gonzalez FJ; Dufour JF; Idle JR
    Cancer Res; 2011 Nov; 71(21):6590-600. PubMed ID: 21900402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vitro/In Vivo Metabolism of Ginsenoside Rg5 in Rat Using Ultra-Performance Liquid Chromatography/Quadrupole-Time-of-Flight Mass Spectrometry.
    Hong C; Yang P; Li S; Guo Y; Wang D; Wang J
    Molecules; 2018 Aug; 23(9):. PubMed ID: 30135411
    [No Abstract]   [Full Text] [Related]  

  • 19. Comparison of procainamide and 2-aminobenzamide labeling for profiling and identification of glycans by liquid chromatography with fluorescence detection coupled to electrospray ionization-mass spectrometry.
    Kozak RP; Tortosa CB; Fernandes DL; Spencer DI
    Anal Biochem; 2015 Oct; 486():38-40. PubMed ID: 26079702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Procainamide, N-acetylprocainamide, antinuclear antibody and systemic lupus erythematosus.
    Reidenberg MM; Drayer DE
    Angiology; 1986 Dec; 37(12 Pt 2):968-71. PubMed ID: 2433971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.