BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22388726)

  • 61. ATM gene deletion in patients with adult acute lymphoblastic leukemia.
    Haidar MA; Kantarjian H; Manshouri T; Chang CY; O'Brien S; Freireich E; Keating M; Albitar M
    Cancer; 2000 Mar; 88(5):1057-62. PubMed ID: 10699895
    [TBL] [Abstract][Full Text] [Related]  

  • 62. hTERT promoter methylation and telomere length in childhood acute lymphoblastic leukemia: associations with immunophenotype and cytogenetic subgroup.
    Borssén M; Cullman I; Norén-Nyström U; Sundström C; Porwit A; Forestier E; Roos G
    Exp Hematol; 2011 Dec; 39(12):1144-51. PubMed ID: 21914494
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Comparative genomic hybridization in childhood acute lymphoblastic leukemia: correlation with interphase cytogenetics and loss of heterozygosity analysis.
    Scholz I; Popp S; Granzow M; Schoell B; Holtgreve-Grez H; Takeuchi S; Schrappe M; Harbott J; Teigler-Schlegel A; Zimmermann M; Fischer C; Koeffler HP; Bartram CR; Jauch A
    Cancer Genet Cytogenet; 2001 Jan; 124(2):89-97. PubMed ID: 11172898
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Alterations of the p53, p21, p16, p15 and RAS genes in childhood T-cell acute lymphoblastic leukemia.
    Kawamura M; Ohnishi H; Guo SX; Sheng XM; Minegishi M; Hanada R; Horibe K; Hongo T; Kaneko Y; Bessho F; Yanagisawa M; Sekiya T; Hayashi Y
    Leuk Res; 1999 Feb; 23(2):115-26. PubMed ID: 10071127
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A comprehensive analysis of the CDKN2A gene in childhood acute lymphoblastic leukemia reveals genomic deletion, copy number neutral loss of heterozygosity, and association with specific cytogenetic subgroups.
    Sulong S; Moorman AV; Irving JA; Strefford JC; Konn ZJ; Case MC; Minto L; Barber KE; Parker H; Wright SL; Stewart AR; Bailey S; Bown NP; Hall AG; Harrison CJ
    Blood; 2009 Jan; 113(1):100-7. PubMed ID: 18838613
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Analysis of a family of cyclin-dependent kinase inhibitors: p15/MTS2/INK4B, p16/MTS1/INK4A, and p18 genes in acute lymphoblastic leukemia of childhood.
    Takeuchi S; Bartram CR; Seriu T; Miller CW; Tobler A; Janssen JW; Reiter A; Ludwig WD; Zimmermann M; Schwaller J
    Blood; 1995 Jul; 86(2):755-60. PubMed ID: 7606004
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mutations of FLT3, NRAS, KRAS, and PTPN11 are frequent and possibly mutually exclusive in high hyperdiploid childhood acute lymphoblastic leukemia.
    Paulsson K; Horvat A; Strömbeck B; Nilsson F; Heldrup J; Behrendtz M; Forestier E; Andersson A; Fioretos T; Johansson B
    Genes Chromosomes Cancer; 2008 Jan; 47(1):26-33. PubMed ID: 17910045
    [TBL] [Abstract][Full Text] [Related]  

  • 68.
    Xu H; Zhao X; Bhojwani D; E S; Goodings C; Zhang H; Seibel NL; Yang W; Li C; Carroll WL; Evans WE; Yang JJ
    Clin Cancer Res; 2020 Jan; 26(1):256-264. PubMed ID: 31573954
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Polymorphisms within glutathione S-transferase genes (GSTM1, GSTT1, GSTP1) and risk of relapse in childhood B-cell precursor acute lymphoblastic leukemia: a case-control study.
    Stanulla M; Schrappe M; Brechlin AM; Zimmermann M; Welte K
    Blood; 2000 Feb; 95(4):1222-8. PubMed ID: 10666194
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Hyperdiploid (47-50) acute lymphoblastic leukemia in children.
    Raimondi SC; Roberson PK; Pui CH; Behm FG; Rivera GK
    Blood; 1992 Jun; 79(12):3245-52. PubMed ID: 1596566
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Increased incidence of spontaneous apoptosis in the bone marrow of hyperdiploid childhood acute lymphoblastic leukemia.
    Zhang Y; Lu J; van den Berghe J; Lee SH
    Exp Hematol; 2002 Apr; 30(4):333-9. PubMed ID: 11937268
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome.
    Harvey RC; Mullighan CG; Wang X; Dobbin KK; Davidson GS; Bedrick EJ; Chen IM; Atlas SR; Kang H; Ar K; Wilson CS; Wharton W; Murphy M; Devidas M; Carroll AJ; Borowitz MJ; Bowman WP; Downing JR; Relling M; Yang J; Bhojwani D; Carroll WL; Camitta B; Reaman GH; Smith M; Hunger SP; Willman CL
    Blood; 2010 Dec; 116(23):4874-84. PubMed ID: 20699438
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Loss at 12p detected by comparative genomic hybridization (CGH): association with TEL-AML1 fusion and favorable prognostic features in childhood acute lymphoblastic leukemia (ALL). A multi-institutional study.
    Kanerva J; Niini T; Vettenranta K; Riikonen P; Mäkipernaa A; Karhu R; Knuutila S; Saarinen-Pihkala UM
    Med Pediatr Oncol; 2001 Nov; 37(5):419-25. PubMed ID: 11745869
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Prognostic Impact of Somatic Copy Number Alterations in Childhood B-Lineage Acute Lymphoblastic Leukemia.
    Rosales-Rodríguez B; Núñez-Enríquez JC; Mejía-Aranguré JM; Rosas-Vargas H
    Curr Oncol Rep; 2020 Nov; 23(1):2. PubMed ID: 33190177
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Genome-wide copy number profiling reveals molecular evolution from diagnosis to relapse in childhood acute lymphoblastic leukemia.
    Yang JJ; Bhojwani D; Yang W; Cai X; Stocco G; Crews K; Wang J; Morrison D; Devidas M; Hunger SP; Willman CL; Raetz EA; Pui CH; Evans WE; Relling MV; Carroll WL
    Blood; 2008 Nov; 112(10):4178-83. PubMed ID: 18768390
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Frequencies and prognostic impact of RAS mutations in MLL-rearranged acute lymphoblastic leukemia in infants.
    Driessen EM; van Roon EH; Spijkers-Hagelstein JA; Schneider P; de Lorenzo P; Valsecchi MG; Pieters R; Stam RW
    Haematologica; 2013 Jun; 98(6):937-44. PubMed ID: 23403319
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Impact of glutathione S-transferase gene deletion on early relapse in childhood B-precursor acute lymphoblastic leukemia.
    Takanashi M; Morimoto A; Yagi T; Kuriyama K; Kano G; Imamura T; Hibi S; Todo S; Imashuku S
    Haematologica; 2003 Nov; 88(11):1238-44. PubMed ID: 14607752
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Clinical impact of minimal residual disease in children with different subtypes of acute lymphoblastic leukemia treated with Response-Adapted therapy.
    Pui CH; Pei D; Raimondi SC; Coustan-Smith E; Jeha S; Cheng C; Bowman WP; Sandlund JT; Ribeiro RC; Rubnitz JE; Inaba H; Gruber TA; Leung WH; Yang JJ; Downing JR; Evans WE; Relling MV; Campana D
    Leukemia; 2017 Feb; 31(2):333-339. PubMed ID: 27560110
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Analysis of Ig and T-cell receptor genes in 40 childhood acute lymphoblastic leukemias at diagnosis and subsequent relapse: implications for the detection of minimal residual disease by polymerase chain reaction analysis.
    Beishuizen A; Verhoeven MA; van Wering ER; Hählen K; Hooijkaas H; van Dongen JJ
    Blood; 1994 Apr; 83(8):2238-47. PubMed ID: 8161789
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Expression of Livin, an antiapoptotic protein, is an independent favorable prognostic factor in childhood acute lymphoblastic leukemia.
    Choi J; Hwang YK; Sung KW; Lee SH; Yoo KH; Jung HL; Koo HH; Kim HJ; Kang HJ; Shin HY; Ahn HS
    Blood; 2007 Jan; 109(2):471-7. PubMed ID: 16990595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.