These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 22388867)
21. Mmc, a gene involved in microcycle conidiation of the entomopathogenic fungus Metarhizium anisopliae. Liu J; Cao Y; Xia Y J Invertebr Pathol; 2010 Oct; 105(2):132-8. PubMed ID: 20546749 [TBL] [Abstract][Full Text] [Related]
22. Insight into the transcriptional regulation of Msn2 required for conidiation, multi-stress responses and virulence of two entomopathogenic fungi. Liu Q; Ying SH; Li JG; Tian CG; Feng MG Fungal Genet Biol; 2013 May; 54():42-51. PubMed ID: 23466345 [TBL] [Abstract][Full Text] [Related]
23. The polyubiquitin gene Wang Z; Zhu H; Cheng Y; Jiang Y; Li Y; Huang B Genes (Basel); 2019 May; 10(6):. PubMed ID: 31146457 [TBL] [Abstract][Full Text] [Related]
24. Agrobacterium-mediated disruption of a nonribosomal peptide synthetase gene in the invertebrate pathogen Metarhizium anisopliae reveals a peptide spore factor. Moon YS; Donzelli BG; Krasnoff SB; McLane H; Griggs MH; Cooke P; Vandenberg JD; Gibson DM; Churchill AC Appl Environ Microbiol; 2008 Jul; 74(14):4366-80. PubMed ID: 18502925 [TBL] [Abstract][Full Text] [Related]
25. MrArk1, an actin-regulating kinase gene, is required for endocytosis and involved in sustaining conidiation capacity and virulence in Metarhizium robertsii. Wang Z; Jiang Y; Li Y; Feng J; Huang B Appl Microbiol Biotechnol; 2019 Jun; 103(12):4859-4868. PubMed ID: 31025075 [TBL] [Abstract][Full Text] [Related]
26. GATA-type transcription factor MrNsdD regulates dimorphic transition, conidiation, virulence and microsclerotium formation in the entomopathogenic fungus Metarhizium rileyi. Xin C; Yang J; Mao Y; Chen W; Wang Z; Song Z Microb Biotechnol; 2020 Sep; 13(5):1489-1501. PubMed ID: 32395911 [TBL] [Abstract][Full Text] [Related]
27. Calcineurin modulates growth, stress tolerance, and virulence in Metarhizium acridum and its regulatory network. Cao Y; Du M; Luo S; Xia Y Appl Microbiol Biotechnol; 2014 Oct; 98(19):8253-65. PubMed ID: 24931310 [TBL] [Abstract][Full Text] [Related]
28. Downregulation of pre-rRNA processing gene Mamrd1 decreases growth, conidiation and virulence in the entomopathogenic fungus Metarhizium acridum. Cao Y; Li K; Xia Y Res Microbiol; 2011 Sep; 162(7):729-36. PubMed ID: 21624460 [TBL] [Abstract][Full Text] [Related]
29. Regulation of conidiation, dimorphic transition, and microsclerotia formation by MrSwi6 transcription factor in dimorphic fungus Metarhizium rileyi. Wang Z; Yang J; Xin C; Xing X; Yin Y; Chen L; Song Z World J Microbiol Biotechnol; 2019 Mar; 35(3):46. PubMed ID: 30825005 [TBL] [Abstract][Full Text] [Related]
30. Disruptions of the genes involved in lysine biosynthesis, iron acquisition, and secondary metabolisms affect virulence and fitness in Metarhizium robertsii. Donzelli BGG; Turgeon BG; Gibson DM; Krasnoff SB Fungal Genet Biol; 2017 Jan; 98():23-34. PubMed ID: 27876630 [TBL] [Abstract][Full Text] [Related]
31. Genetically altering the expression of neutral trehalase gene affects conidiospore thermotolerance of the entomopathogenic fungus Metarhizium acridum. Leng Y; Peng G; Cao Y; Xia Y BMC Microbiol; 2011 Feb; 11():32. PubMed ID: 21310069 [TBL] [Abstract][Full Text] [Related]
32. The G-protein coupled receptor GPRK contributes to fungal development and full virulence in Metarhizium robertsii. Yu D; Xie R; Wang Y; Xie T; Xu L; Huang B J Invertebr Pathol; 2021 Jul; 183():107627. PubMed ID: 34081962 [TBL] [Abstract][Full Text] [Related]
33. MaMk1, a FUS3/KSS1-type mitogen-activated protein kinase gene, is required for appressorium formation, and insect cuticle penetration of the entomopathogenic fungus Metarhizium acridum. Jin K; Han L; Xia Y J Invertebr Pathol; 2014 Jan; 115():68-75. PubMed ID: 24184951 [TBL] [Abstract][Full Text] [Related]
34. Mapmi gene contributes to stress tolerance and virulence of the entomopathogenic fungus, Metarhizium acridum. Cao Y; Li M; Xia Y J Invertebr Pathol; 2011 Sep; 108(1):7-12. PubMed ID: 21683706 [TBL] [Abstract][Full Text] [Related]
35. Mid1 affects ion transport, cell wall integrity, and host penetration of the entomopathogenic fungus Metarhizium acridum. Xie M; Zhou X; Xia Y; Cao Y Appl Microbiol Biotechnol; 2019 Feb; 103(4):1801-1810. PubMed ID: 30617534 [TBL] [Abstract][Full Text] [Related]
36. The tetraspanin gene MaPls1 contributes to virulence by affecting germination, appressorial function and enzymes for cuticle degradation in the entomopathogenic fungus, Metarhizium acridum. Luo S; He M; Cao Y; Xia Y Environ Microbiol; 2013 Nov; 15(11):2966-79. PubMed ID: 23809263 [TBL] [Abstract][Full Text] [Related]
37. Phylogenetic, genomic organization and expression analysis of hydrophobin genes in the ectomycorrhizal basidiomycete Laccaria bicolor. Plett JM; Gibon J; Kohler A; Duffy K; Hoegger PJ; Velagapudi R; Han J; Kües U; Grigoriev IV; Martin F Fungal Genet Biol; 2012 Mar; 49(3):199-209. PubMed ID: 22293303 [TBL] [Abstract][Full Text] [Related]
38. Cloning and regulatory analysis of starvation-stress gene, ssgA, encoding a hydrophobin-like protein from the entomopathogenic fungus, Metarhizium anisopliae. St Leger RJ; Staples RC; Roberts DW Gene; 1992 Oct; 120(1):119-24. PubMed ID: 1398117 [TBL] [Abstract][Full Text] [Related]
39. Evidence for a role of the regulator of G-protein signaling protein CPRGS-1 in Galpha subunit CPG-1-mediated regulation of fungal virulence, conidiation, and hydrophobin synthesis in the chestnut blight fungus Cryphonectria parasitica. Segers GC; Regier JC; Nuss DL Eukaryot Cell; 2004 Dec; 3(6):1454-63. PubMed ID: 15590820 [TBL] [Abstract][Full Text] [Related]
40. Combined use of the entomopathogenic fungus, Metarhizium brunneum, and the mosquito predator, Toxorhynchites brevipalpis, for control of mosquito larvae: Is this a risky biocontrol strategy? Alkhaibari AM; Maffeis T; Bull JC; Butt TM J Invertebr Pathol; 2018 Mar; 153():38-50. PubMed ID: 29425967 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]