These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 22388939)
1. Microcarrier-based expansion process for hMSCs with high vitality and undifferentiated characteristics. Elseberg CL; Leber J; Salzig D; Wallrapp C; Kassem M; Kraume M; Czermak P Int J Artif Organs; 2012 Feb; 35(2):93-107. PubMed ID: 22388939 [TBL] [Abstract][Full Text] [Related]
2. Expansion of Human Mesenchymal Stem Cells in a Microcarrier Bioreactor. Tsai AC; Ma T Methods Mol Biol; 2016; 1502():77-86. PubMed ID: 27032950 [TBL] [Abstract][Full Text] [Related]
3. Improved expansion of human bone marrow-derived mesenchymal stem cells in microcarrier-based suspension culture. Yuan Y; Kallos MS; Hunter C; Sen A J Tissue Eng Regen Med; 2014 Mar; 8(3):210-25. PubMed ID: 22689330 [TBL] [Abstract][Full Text] [Related]
4. Wave microcarrier cultivation of MDCK cells for influenza virus production in serum containing and serum-free media. Genzel Y; Olmer RM; Schäfer B; Reichl U Vaccine; 2006 Aug; 24(35-36):6074-87. PubMed ID: 16781022 [TBL] [Abstract][Full Text] [Related]
5. Expansion of human mesenchymal stem cells in a fixed-bed bioreactor system based on non-porous glass carrier - Part B: Modeling and scale-up of the system. Weber C; Freimark D; Pörtner R; Pino-Grace P; Pohl S; Wallrapp C; Geigle P; Czermak P Int J Artif Organs; 2010 Nov; 33(11):782-95. PubMed ID: 21140354 [TBL] [Abstract][Full Text] [Related]
6. Increasing efficiency of human mesenchymal stromal cell culture by optimization of microcarrier concentration and design of medium feed. Chen AK; Chew YK; Tan HY; Reuveny S; Weng Oh SK Cytotherapy; 2015 Feb; 17(2):163-73. PubMed ID: 25304664 [TBL] [Abstract][Full Text] [Related]
7. Expansion of mouse sertoli cells on microcarriers. Shi B; Zhang S; Wang Y; Zhuang Y; Chu J; Zhang S; Shi X; Bi J; Guo M Cell Prolif; 2010 Jun; 43(3):275-86. PubMed ID: 20546245 [TBL] [Abstract][Full Text] [Related]
8. Process development of human multipotent stromal cell microcarrier culture using an automated high-throughput microbioreactor. Rafiq QA; Hanga MP; Heathman TRJ; Coopman K; Nienow AW; Williams DJ; Hewitt CJ Biotechnol Bioeng; 2017 Oct; 114(10):2253-2266. PubMed ID: 28627713 [TBL] [Abstract][Full Text] [Related]
9. Large-Scale Expansion and Differentiation of Mesenchymal Stem Cells in Microcarrier-Based Stirred Bioreactors. Sart S; Agathos SN Methods Mol Biol; 2016; 1502():87-102. PubMed ID: 26892015 [TBL] [Abstract][Full Text] [Related]
10. Expansion of human mesenchymal stem cells in a fixed-bed bioreactor system based on non-porous glass carrier--part A: inoculation, cultivation, and cell harvest procedures. Weber C; Freimark D; Pörtner R; Pino-Grace P; Pohl S; Wallrapp C; Geigle P; Czermak P Int J Artif Organs; 2010 Aug; 33(8):512-25. PubMed ID: 20872346 [TBL] [Abstract][Full Text] [Related]
11. Comparison of a production process in a membrane-aerated stirred tank and up to 1000-L airlift bioreactors using BHK-21 cells and chemically defined protein-free medium. Hesse F; Ebel M; Konisch N; Sterlinski R; Kessler W; Wagner R Biotechnol Prog; 2003; 19(3):833-43. PubMed ID: 12790647 [TBL] [Abstract][Full Text] [Related]
12. Growth and functional harvesting of human mesenchymal stromal cells cultured on a microcarrier-based system. Caruso SR; Orellana MD; Mizukami A; Fernandes TR; Fontes AM; Suazo CA; Oliveira VC; Covas DT; Swiech K Biotechnol Prog; 2014; 30(4):889-95. PubMed ID: 24574042 [TBL] [Abstract][Full Text] [Related]
13. Culture of human mesenchymal stem cells on microcarriers in a 5 l stirred-tank bioreactor. Rafiq QA; Brosnan KM; Coopman K; Nienow AW; Hewitt CJ Biotechnol Lett; 2013 Aug; 35(8):1233-45. PubMed ID: 23609232 [TBL] [Abstract][Full Text] [Related]
14. Modulation of mesenchymal stromal cell characteristics by microcarrier culture in bioreactors. Hupfeld J; Gorr IH; Schwald C; Beaucamp N; Wiechmann K; Kuentzer K; Huss R; Rieger B; Neubauer M; Wegmeyer H Biotechnol Bioeng; 2014 Nov; 111(11):2290-302. PubMed ID: 24890974 [TBL] [Abstract][Full Text] [Related]
15. A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells. Dos Santos F; Campbell A; Fernandes-Platzgummer A; Andrade PZ; Gimble JM; Wen Y; Boucher S; Vemuri MC; da Silva CL; Cabral JM Biotechnol Bioeng; 2014 Jun; 111(6):1116-27. PubMed ID: 24420557 [TBL] [Abstract][Full Text] [Related]
16. Selection of human induced pluripotent stem cells lines optimization of cardiomyocytes differentiation in an integrated suspension microcarrier bioreactor. Laco F; Lam AT; Woo TL; Tong G; Ho V; Soong PL; Grishina E; Lin KH; Reuveny S; Oh SK Stem Cell Res Ther; 2020 Mar; 11(1):118. PubMed ID: 32183888 [TBL] [Abstract][Full Text] [Related]
17. Expansion of human mesenchymal stem cells on microcarriers. Hewitt CJ; Lee K; Nienow AW; Thomas RJ; Smith M; Thomas CR Biotechnol Lett; 2011 Nov; 33(11):2325-35. PubMed ID: 21769648 [TBL] [Abstract][Full Text] [Related]
18. Production of oncolytic adenovirus and human mesenchymal stem cells in a single-use, Vertical-Wheel bioreactor system: Impact of bioreactor design on performance of microcarrier-based cell culture processes. Sousa MF; Silva MM; Giroux D; Hashimura Y; Wesselschmidt R; Lee B; Roldão A; Carrondo MJ; Alves PM; Serra M Biotechnol Prog; 2015; 31(6):1600-12. PubMed ID: 26289142 [TBL] [Abstract][Full Text] [Related]
19. Cyclic operation of ceramic-matrix animal cell bioreactors for controlled secretion of an endocrine hormone. A comparison of single-pass and recycle modes of operation. Grampp GE; Applegate MA; Stephanopoulos G Biotechnol Prog; 1996; 12(6):837-46. PubMed ID: 8983208 [TBL] [Abstract][Full Text] [Related]
20. Low-glutamine fed-batch cultures of 293-HEK serum-free suspension cells for adenovirus production. Lee YY; Yap MG; Hu WS; Wong KT Biotechnol Prog; 2003; 19(2):501-9. PubMed ID: 12675594 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]