BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 22389193)

  • 1. The effect of tissue-engineered cartilage biomechanical and biochemical properties on its post-implantation mechanical behavior.
    Khoshgoftar M; Wilson W; Ito K; van Donkelaar CC
    Biomech Model Mechanobiol; 2013 Jan; 12(1):43-54. PubMed ID: 22389193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the temporal deposition of extracellular matrix on the mechanical properties of tissue-engineered cartilage.
    Khoshgoftar M; Wilson W; Ito K; van Donkelaar CC
    Tissue Eng Part A; 2014 May; 20(9-10):1476-85. PubMed ID: 24377881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of tissue- and cell-scale extracellular matrix distribution on the mechanical properties of tissue-engineered cartilage.
    Khoshgoftar M; Wilson W; Ito K; van Donkelaar CC
    Biomech Model Mechanobiol; 2013 Oct; 12(5):901-13. PubMed ID: 23160844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The composition of engineered cartilage at the time of implantation determines the likelihood of regenerating tissue with a normal collagen architecture.
    Nagel T; Kelly DJ
    Tissue Eng Part A; 2013 Apr; 19(7-8):824-33. PubMed ID: 23082998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical stimulation to stimulate formation of a physiological collagen architecture in tissue-engineered cartilage: a numerical study.
    Khoshgoftar M; van Donkelaar CC; Ito K
    Comput Methods Biomech Biomed Engin; 2011 Feb; 14(2):135-44. PubMed ID: 21337221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of matrix inhomogeneities on the cellular mechanical environment in tissue-engineered cartilage: an in silico investigation.
    Khoshgoftar M; Wilson W; Ito K; van Donkelaar CC
    Tissue Eng Part C Methods; 2014 Feb; 20(2):104-15. PubMed ID: 23679046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model.
    Julkunen P; Kiviranta P; Wilson W; Jurvelin JS; Korhonen RK
    J Biomech; 2007; 40(8):1862-70. PubMed ID: 17052722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of postnatal collagen reorientation to depth-dependent mechanical properties of articular cartilage.
    van Turnhout MC; Kranenbarg S; van Leeuwen JL
    Biomech Model Mechanobiol; 2011 Apr; 10(2):269-79. PubMed ID: 20526790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of tissue composition and structure to mechanical response of articular cartilage under different loading geometries and strain rates.
    Julkunen P; Jurvelin JS; Isaksson H
    Biomech Model Mechanobiol; 2010 Apr; 9(2):237-45. PubMed ID: 19680701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the constitutive properties of native, tissue engineered, and degenerated articular cartilage.
    Seifzadeh A; Oguamanam DC; Papini M
    Clin Biomech (Bristol, Avon); 2012 Oct; 27(8):852-8. PubMed ID: 22578740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative contribution of articular cartilage's constitutive components to load support depending on strain rate.
    Quiroga JMP; Wilson W; Ito K; van Donkelaar CC
    Biomech Model Mechanobiol; 2017 Feb; 16(1):151-158. PubMed ID: 27416853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the scaffold geometry on the spatial and temporal evolution of the mechanical properties of tissue-engineered cartilage: insights from a mathematical model.
    Bandeiras C; Completo A; Ramos A
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1057-70. PubMed ID: 25801173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of a mechanical stimulation bioreactor on tissue engineered, scaffold-free cartilage.
    Tran SC; Cooley AJ; Elder SH
    Biotechnol Bioeng; 2011 Jun; 108(6):1421-9. PubMed ID: 21274847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depth-dependent compressive equilibrium properties of articular cartilage explained by its composition.
    Wilson W; Huyghe JM; van Donkelaar CC
    Biomech Model Mechanobiol; 2007 Jan; 6(1-2):43-53. PubMed ID: 16710737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of viscoelasticity of collagen fibers in articular cartilage: theory and numerical formulation.
    Li LP; Herzog W
    Biorheology; 2004; 41(3-4):181-94. PubMed ID: 15299251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element study of a tissue-engineered cartilage transplant in human tibiofemoral joint.
    Vahdati A; Wagner DR
    Comput Methods Biomech Biomed Engin; 2012; 15(11):1211-21. PubMed ID: 21809943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of fiber orientation on the equilibrium properties of neutral and charged biphasic tissues.
    Nagel T; Kelly DJ
    J Biomech Eng; 2010 Nov; 132(11):114506. PubMed ID: 21034158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depth-dependent biomechanical and biochemical properties of fetal, newborn, and tissue-engineered articular cartilage.
    Klein TJ; Chaudhry M; Bae WC; Sah RL
    J Biomech; 2007; 40(1):182-90. PubMed ID: 16387310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.