These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 22389376)

  • 1. Composting for avian influenza virus elimination.
    Elving J; Emmoth E; Albihn A; Vinnerås B; Ottoson J
    Appl Environ Microbiol; 2012 May; 78(9):3280-5. PubMed ID: 22389376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ammonia disinfection of hatchery waste for elimination of single-stranded RNA viruses.
    Emmoth E; Ottoson J; Albihn A; Belák S; Vinnerås B
    Appl Environ Microbiol; 2011 Jun; 77(12):3960-6. PubMed ID: 21515734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of bacteriophages of the family Cystoviridae as surrogates for H5N1 highly pathogenic avian influenza viruses in persistence and inactivation studies.
    Adcock NJ; Rice EW; Sivaganesan M; Brown JD; Stallknecht DE; Swayne DE
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Nov; 44(13):1362-6. PubMed ID: 20183493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the air-water-solid interface in bacteriophage sorption experiments.
    Thompson SS; Flury M; Yates MV; Jury WA
    Appl Environ Microbiol; 1998 Jan; 64(1):304-9. PubMed ID: 9435082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Unique Multibasic Proteolytic Cleavage Site and Three Mutations in the HA2 Domain Confer High Virulence of H7N1 Avian Influenza Virus in Chickens.
    Abdelwhab el-SM; Veits J; Tauscher K; Ziller M; Teifke JP; Stech J; Mettenleiter TC
    J Virol; 2016 Jan; 90(1):400-11. PubMed ID: 26491158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Persistence of low-pathogenic H5N7 and H7N1 avian influenza subtypes in filtered natural waters.
    Nielsen AA; Jensen TH; Stockmarr A; Jørgensen PH
    Vet Microbiol; 2013 Oct; 166(3-4):419-28. PubMed ID: 23891171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decay of Salmonella enterica, Escherichia coli and bacteriophage MS2 on the phyllosphere and stored grains of wheat (Triticum aestivum).
    Schwarz K; Sidhu JP; Pritchard D; Li Y; Toze S
    Lett Appl Microbiol; 2014 Jan; 58(1):16-24. PubMed ID: 23980794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influenza viruses production: Evaluation of a novel avian cell line DuckCelt®-T17.
    Petiot E; Proust A; Traversier A; Durous L; Dappozze F; Gras M; Guillard C; Balloul JM; Rosa-Calatrava M
    Vaccine; 2018 May; 36(22):3101-3111. PubMed ID: 28571695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virus inactivation in the presence of quartz sand under static and dynamic batch conditions at different temperatures.
    Chrysikopoulos CV; Aravantinou AF
    J Hazard Mater; 2012 Sep; 233-234():148-57. PubMed ID: 22819478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuropathogenesis of a highly pathogenic avian influenza virus (H7N1) in experimentally infected chickens.
    Chaves AJ; Busquets N; Valle R; Rivas R; Vergara-Alert J; Dolz R; Ramis A; Darji A; Majó N
    Vet Res; 2011 Oct; 42(1):106. PubMed ID: 21982125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Risk of Human Infections With Highly Pathogenic H5N2 and Low Pathogenic H7N1 Avian Influenza Strains During Outbreaks in Ostriches in South Africa.
    Venter M; Treurnicht FK; Buys A; Tempia S; Samudzi R; McAnerney J; Jacobs CA; Thomas J; Blumberg L
    J Infect Dis; 2017 Sep; 216(suppl_4):S512-S519. PubMed ID: 28934458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An avian H7N1 gain-of-function experiment of great concern.
    Wain-Hobson S
    mBio; 2014 Oct; 5(5):e01882-14. PubMed ID: 25316697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prevalence of the C-terminal truncations of NS1 in avian influenza A viruses and effect on virulence and replication of a highly pathogenic H7N1 virus in chickens.
    Abdelwhab el-SM; Veits J; Breithaupt A; Gohrbandt S; Ziller M; Teifke JP; Stech J; Mettenleiter TC
    Virulence; 2016 Jul; 7(5):546-57. PubMed ID: 26981790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of hepatitis A HM-175/18f, reovirus T1 Lang and MS2 during alkaline stabilization of human biosolids.
    Katz BD; Margolin AB
    J Appl Microbiol; 2007 Dec; 103(6):2225-33. PubMed ID: 18045405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The decision to publish an avian H7N1 influenza virus gain-of-function experiment.
    Dermody TS; Casadevall A; Imperiale MJ; Sandri-Goldin RM; Shenk T
    mBio; 2014 Oct; 5(5):e01985-14. PubMed ID: 25316699
    [No Abstract]   [Full Text] [Related]  

  • 16. Modelling the spatial spread of H7N1 avian influenza virus among poultry farms in Italy.
    Dorigatti I; Mulatti P; Rosà R; Pugliese A; Busani L
    Epidemics; 2010 Mar; 2(1):29-35. PubMed ID: 21352774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental infection of domestic geese (
    Sánchez-González R; Ramis A; Nofrarías M; Wali N; Valle R; Pérez M; Perlas A; Majó N
    Avian Pathol; 2020 Dec; 49(6):642-657. PubMed ID: 32795171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfer Rate of Enveloped and Nonenveloped Viruses between Fingerpads and Surfaces.
    Anderson CE; Boehm AB
    Appl Environ Microbiol; 2021 Oct; 87(22):e0121521. PubMed ID: 34469200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of microbial activity to virus reduction in saturated soil.
    Nasser AM; Glozman R; Nitzan Y
    Water Res; 2002 May; 36(10):2589-95. PubMed ID: 12153026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of Aleutian mink disease virus through high temperature exposure in vitro and under field-based composting conditions.
    Hussain I; Price GW; Farid AH
    Vet Microbiol; 2014 Sep; 173(1-2):50-8. PubMed ID: 25139658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.