These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 22389376)

  • 21. Susceptibility to and transmission of H5N1 and H7N1 highly pathogenic avian influenza viruses in bank voles (Myodes glareolus).
    Romero Tejeda A; Aiello R; Salomoni A; Berton V; Vascellari M; Cattoli G
    Vet Res; 2015 May; 46(1):51. PubMed ID: 25963535
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Survival of avian influenza and Newcastle disease viruses in compost and at ambient temperatures based on virus isolation and real-time reverse transcriptase PCR.
    Guan J; Chan M; Grenier C; Wilkie DC; Brooks BW; Spencer JL
    Avian Dis; 2009 Mar; 53(1):26-33. PubMed ID: 19432000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Infectivity and pathobiology of H7N1 and H5N8 high pathogenicity avian influenza viruses for pigeons (
    Sánchez-González R; Ramis A; Nofrarías M; Wali N; Valle R; Pérez M; Perlas A; Majó N
    Avian Pathol; 2021 Feb; 50(1):98-106. PubMed ID: 33034513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deletion of the C-terminal ESEV domain of NS1 does not affect the replication of a low-pathogenic avian influenza virus H7N1 in ducks and chickens.
    Soubies SM; Hoffmann TW; Croville G; Larcher T; Ledevin M; Soubieux D; Quéré P; Guérin JL; Marc D; Volmer R
    J Gen Virol; 2013 Jan; 94(Pt 1):50-58. PubMed ID: 23052391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Virulence of three European highly pathogenic H7N1 and H7N7 avian influenza viruses in Pekin and Muscovy ducks.
    Scheibner D; Blaurock C; Mettenleiter TC; Abdelwhab EM
    BMC Vet Res; 2019 May; 15(1):142. PubMed ID: 31077209
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pathogenesis and transmissibility of highly (H7N1) and low (H7N9) pathogenic avian influenza virus infection in red-legged partridge (Alectoris rufa).
    Bertran K; Pérez-Ramírez E; Busquets N; Dolz R; Ramis A; Darji A; Abad FX; Valle R; Chaves A; Vergara-Alert J; Barral M; Höfle U; Majó N
    Vet Res; 2011 Feb; 42(1):24. PubMed ID: 21314907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Major contribution of the RNA-binding domain of NS1 in the pathogenicity and replication potential of an avian H7N1 influenza virus in chickens.
    Trapp S; Soubieux D; Lidove A; Esnault E; Lion A; Guillory V; Wacquiez A; Kut E; Quéré P; Larcher T; Ledevin M; Nadan V; Camus-Bouclainville C; Marc D
    Virol J; 2018 Mar; 15(1):55. PubMed ID: 29587792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mammalian pathogenicity and transmissibility of low pathogenic avian influenza H7N1 and H7N3 viruses isolated from North America in 2018.
    Belser JA; Sun X; Brock N; Pulit-Penaloza JA; Jones J; Zanders N; Davis CT; Tumpey TM; Maines TR
    Emerg Microbes Infect; 2020 Dec; 9(1):1037-1045. PubMed ID: 32449503
    [No Abstract]   [Full Text] [Related]  

  • 29. Chicken dendritic cells are susceptible to highly pathogenic avian influenza viruses which induce strong cytokine responses.
    Vervelde L; Reemers SS; van Haarlem DA; Post J; Claassen E; Rebel JM; Jansen CA
    Dev Comp Immunol; 2013 Mar; 39(3):198-206. PubMed ID: 23178410
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A biosecure composting system for disposal of cattle carcasses and manure following infectious disease outbreak.
    Xu W; Reuter T; Inglis GD; Larney FJ; Alexander TW; Guan J; Stanford K; Xu Y; McAllister TA
    J Environ Qual; 2009; 38(2):437-50. PubMed ID: 19202014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Similar transmissibility of the Italian H7N1 highly pathogenic avian influenza virus and its low pathogenic avian influenza virus predecessor.
    Gonzales JL; Koch G; Elbers ARW; van der Goot JA
    Vet J; 2018 Feb; 232():20-22. PubMed ID: 29428086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Replication and pathogenic potential of influenza A virus subtypes H3, H7, and H15 from free-range ducks in Bangladesh in mammals.
    El-Shesheny R; Feeroz MM; Krauss S; Vogel P; McKenzie P; Webby RJ; Webster RG
    Emerg Microbes Infect; 2018 Apr; 7(1):70. PubMed ID: 29691394
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emergence of highly pathogenic H5N2 and H7N1 influenza A viruses from low pathogenic precursors by serial passage in ovo.
    Laleye AT; Abolnik C
    PLoS One; 2020; 15(10):e0240290. PubMed ID: 33031421
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pathobiology of the highly pathogenic avian influenza viruses H7N1 and H5N8 in different chicken breeds and role of Mx 2032 G/A polymorphism in infection outcome.
    Sánchez-González R; Ramis A; Nofrarías M; Wali N; Valle R; Pérez M; Perlas A; Majó N
    Vet Res; 2020 Sep; 51(1):113. PubMed ID: 32912265
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Virus inactivation in groundwater in a postglacial lava field in arctic climate.
    Benediktsdóttir E; Gunnarsdóttir MJ; Ómarsdóttir BD; Sigurjónsson VÍ; Gardarsson SM
    Lett Appl Microbiol; 2020 Apr; 70(4):282-289. PubMed ID: 31894582
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Revisiting the succession of microbial populations throughout composting: A matter of thermotolerance.
    Moreno J; López-González JA; Arcos-Nievas MA; Suárez-Estrella F; Jurado MM; Estrella-González MJ; López MJ
    Sci Total Environ; 2021 Jun; 773():145587. PubMed ID: 33592470
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptive amino acid substitutions enhance the virulence of a reassortant H7N1 avian influenza virus isolated from wild waterfowl in mice.
    Yu Z; Sun W; Li X; Chen Q; Chai H; Gao X; Guo J; Zhang K; Wang T; Feng N; Zheng X; Wang H; Zhao Y; Qin C; Huang G; Yang S; Hua Y; Zhang X; Gao Y; Xia X
    Virology; 2015 Feb; 476():233-239. PubMed ID: 25555151
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutations in matrix protein 1 and nucleoprotein caused human-specific defects in nuclear exportation and viral assembly of an avian influenza H7N1 virus.
    Ninpan K; Suptawiwat O; Boonarkart C; Songprakhon P; Puthavathana P; Auewarakul P
    Virus Res; 2017 Jun; 238():49-62. PubMed ID: 28579356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of UV-Induced Inactivation and RNA Damage in MS2 Phage across the Germicidal UV Spectrum.
    Beck SE; Rodriguez RA; Hawkins MA; Hargy TM; Larason TC; Linden KG
    Appl Environ Microbiol; 2015 Dec; 82(5):1468-1474. PubMed ID: 26712541
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sequence changes associated with respiratory transmission of H7N1 influenza virus in mammals.
    Dermody TS; Sandri-Goldin RM; Shenk T
    J Virol; 2014 Jun; 88(12):6533-4. PubMed ID: 24696481
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.