These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22389537)

  • 1. Effect of Divalent Ions on Electroosmotic Flow in Microchannels.
    Datta S; Conlisk AT; Li HF; Yoda M
    Mech Res Commun; 2009 Jan; 36(1):65-74. PubMed ID: 22389537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative theory of electroosmotic flow in fused-silica capillaries using an extended site-dissociation--site-binding model.
    Zhou MX; Foley JP
    Anal Chem; 2006 Mar; 78(6):1849-58. PubMed ID: 16536420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of ion size, ion valence and pH of electrolyte solutions on EOF velocity in single nanochannels.
    Li J; Peng R; Li D
    Anal Chim Acta; 2019 Jun; 1059():68-79. PubMed ID: 30876634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the Nernst-Planck model and the Poisson-Boltzmann model for electroosmotic flows in microchannels.
    Park HM; Lee JS; Kim TW
    J Colloid Interface Sci; 2007 Nov; 315(2):731-9. PubMed ID: 17681522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface potential reflected in both gating and permeation mechanisms of sodium and calcium channels of the tunicate egg cell membrane.
    Ohmori H; Yoshii M
    J Physiol; 1977 May; 267(2):429-63. PubMed ID: 17734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evanescent-wave particle velocimetry measurements of zeta-potentials in fused-silica microchannels.
    Cevheri N; Yoda M
    Electrophoresis; 2013 Jul; 34(13):1950-6. PubMed ID: 23592366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrokinetic pumping effects of charged porous media in microchannels using the lattice Poisson-Boltzmann method.
    Wang M; Wang J; Chen S; Pan N
    J Colloid Interface Sci; 2006 Dec; 304(1):246-53. PubMed ID: 16989843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroosmotic flow velocity in DNA modified nanochannels.
    Li J; Li D
    J Colloid Interface Sci; 2019 Oct; 553():31-39. PubMed ID: 31181468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective capillary electrophoresis separation of mono and divalent cations within a high-surface area-to-volume ratio multi-lumen capillary.
    Nakatani N; Cabot JM; Lam SC; Rodriguez ES; Paull B
    Anal Chim Acta; 2019 Mar; 1051():41-48. PubMed ID: 30661618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroosmotic flow in single PDMS nanochannels.
    Peng R; Li D
    Nanoscale; 2016 Jun; 8(24):12237-46. PubMed ID: 27256765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH.
    Hille B; Woodhull AM; Shapiro BI
    Philos Trans R Soc Lond B Biol Sci; 1975 Jun; 270(908):301-18. PubMed ID: 238230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tradeoff between mixing and transport for electroosmotic flow in heterogeneous microchannels with nonuniform surface potentials.
    Tian F; Li B; Kwok DY
    Langmuir; 2005 Feb; 21(3):1126-31. PubMed ID: 15667199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poisson-Helmholtz-Boltzmann model of the electric double layer: analysis of monovalent ionic mixtures.
    Bohinc K; Shrestha A; Brumen M; May S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031130. PubMed ID: 22587061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroosmotic Flow of Viscoelastic Fluid in a Nanoslit.
    Mei L; Zhang H; Meng H; Qian S
    Micromachines (Basel); 2018 Mar; 9(4):. PubMed ID: 30424089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroosmotic flow: From microfluidics to nanofluidics.
    Alizadeh A; Hsu WL; Wang M; Daiguji H
    Electrophoresis; 2021 Apr; 42(7-8):834-868. PubMed ID: 33382088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of multivalent ions on electroosmotic flow in micro- and nanochannels.
    Zheng Z; Hansford DJ; Conlisk AT
    Electrophoresis; 2003 Sep; 24(17):3006-17. PubMed ID: 12973804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of electroosmotic flow in transdermal iontophoresis.
    Pikal MJ
    Adv Drug Deliv Rev; 2001 Mar; 46(1-3):281-305. PubMed ID: 11259844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the velocity field of the electroosmotic flow in charged capillaries and in capillary columns packed with charged particles: interstitial and intraparticle velocities in capillary electrochromatography systems.
    Liapis AI; Grimes BA
    J Chromatogr A; 2000 Apr; 877(1-2):181-215. PubMed ID: 10845799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalent cationic copolymer coatings allowing tunable electroosmotic flow for optimization of capillary electrophoretic separations.
    Konášová R; Butnariu M; Šolínová V; Kašička V; Koval D
    Anal Chim Acta; 2021 Sep; 1178():338789. PubMed ID: 34482877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroosmotic flow in microchannels with nanostructures.
    Yasui T; Kaji N; Mohamadi MR; Okamoto Y; Tokeshi M; Horiike Y; Baba Y
    ACS Nano; 2011 Oct; 5(10):7775-80. PubMed ID: 21902222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.