These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 22389622)

  • 21. Quantitative detection of staphylococcal enterotoxin B by resonant acoustic profiling.
    Natesan M; Cooper MA; Tran JP; Rivera VR; Poli MA
    Anal Chem; 2009 May; 81(10):3896-902. PubMed ID: 19374426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequential formation of covalently bonded hydrogel multilayers through surface initiated photopolymerization.
    Kizilel S; Sawardecker E; Teymour F; Pérez-Luna VH
    Biomaterials; 2006 Mar; 27(8):1209-15. PubMed ID: 16157371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation of Fibroblast Suppressive Poly(ethylene glycol)-
    Wang B; Feng C; Dang J; Zhu Y; Yang X; Zhang T; Zhang R; Li J; Tang J; Shen C; Shen L; Dong J; Zhang X
    ACS Biomater Sci Eng; 2021 Jan; 7(1):311-321. PubMed ID: 33455202
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A receptor-based immunoassay to detect Staphylococcus enterotoxin B in biological fluids.
    Mukhin DN; Chatterjee S
    Anal Biochem; 1997 Feb; 245(2):213-7. PubMed ID: 9056214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography.
    Revzin A; Russell RJ; Yadavalli VK; Koh WG; Deister C; Hile DD; Mellott MB; Pishko MV
    Langmuir; 2001 Sep; 17(18):5440-7. PubMed ID: 12448421
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reducing nonspecific adhesion on cross-linked hydrogel platforms for real-time immunoassay in serum.
    Carrigan SD; Tabrizian M
    Langmuir; 2005 Dec; 21(26):12320-6. PubMed ID: 16343009
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol.
    Brink KS; Yang PJ; Temenoff JS
    Acta Biomater; 2009 Feb; 5(2):570-9. PubMed ID: 18948068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly compressive and stretchable poly(ethylene glycol) based hydrogels synthesised using pH-responsive nanogels without free-radical chemistry.
    Nguyen NT; Milani AH; Jennings J; Adlam DJ; Freemont AJ; Hoyland JA; Saunders BR
    Nanoscale; 2019 Apr; 11(16):7921-7930. PubMed ID: 30964497
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrafast in situ forming poly(ethylene glycol)-poly(amido amine) hydrogels with tunable drug release properties via controllable degradation rates.
    Buwalda SJ; Bethry A; Hunger S; Kandoussi S; Coudane J; Nottelet B
    Eur J Pharm Biopharm; 2019 Jun; 139():232-239. PubMed ID: 30954658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of poly(ethylene glycol) hydrogels with different network structures for the application of enzyme immobilization.
    Choi D; Lee W; Park J; Koh W
    Biomed Mater Eng; 2008; 18(6):345-56. PubMed ID: 19197111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Angiogenic competency of biodegradable hydrogels fabricated from polyethylene glycol-crosslinked tyrosine-derived polycarbonates.
    Sung HJ; Sakala Labazzo KM; Bolikal D; Weiner MJ; Zimnisky R; Kohn J
    Eur Cell Mater; 2008 Apr; 15():77-87. PubMed ID: 18438755
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 'Clickable' hydrogels for all: facile fabrication and functionalization.
    Beria L; Gevrek TN; Erdog A; Sanyal R; Pasini D; Sanyal A
    Biomater Sci; 2014 Jan; 2(1):67-75. PubMed ID: 32481808
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional pattering of poly (ethylene Glycol) hydrogels through surface-initiated photopolymerization.
    Papavasiliou G; Songprawat P; Pérez-Luna V; Hammes E; Morris M; Chiu YC; Brey E
    Tissue Eng Part C Methods; 2008 Jun; 14(2):129-40. PubMed ID: 18471086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutiscale substrates based on hydrogel-incorporated silicon nanowires for protein patterning and microarray-based immunoassays.
    Han SW; Lee S; Hong J; Jang E; Lee T; Koh WG
    Biosens Bioelectron; 2013 Jul; 45():129-35. PubMed ID: 23455052
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-viral vector delivery from PEG-hyaluronic acid hydrogels.
    Wieland JA; Houchin-Ray TL; Shea LD
    J Control Release; 2007 Jul; 120(3):233-41. PubMed ID: 17582640
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photolithographic patterning of polyethylene glycol hydrogels.
    Hahn MS; Taite LJ; Moon JJ; Rowland MC; Ruffino KA; West JL
    Biomaterials; 2006 Apr; 27(12):2519-24. PubMed ID: 16375965
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Silver nanoparticle-base lateral flow immunoassay for rapid detection of Staphylococcal enterotoxin B in milk and honey.
    Wu KH; Huang WC; Shyu RH; Chang SC
    J Inorg Biochem; 2020 Sep; 210():111163. PubMed ID: 32622212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Injectable hyaluronic acid/poly(ethylene glycol) hydrogels crosslinked via strain-promoted azide-alkyne cycloaddition click reaction.
    Fu S; Dong H; Deng X; Zhuo R; Zhong Z
    Carbohydr Polym; 2017 Aug; 169():332-340. PubMed ID: 28504153
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation, characterization, and evaluation of radiopaque hydrogel filaments for endovascular embolization.
    Constant MJ; Keeley EM; Cruise GM
    J Biomed Mater Res B Appl Biomater; 2009 May; 89(2):306-313. PubMed ID: 18823004
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel multiarm PEG-based hydrogels for tissue engineering.
    Tan H; DeFail AJ; Rubin JP; Chu CR; Marra KG
    J Biomed Mater Res A; 2010 Mar; 92(3):979-87. PubMed ID: 19291691
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.