These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 22389629)

  • 1. Induction of biogenic magnetization and redox control by a component of the target of rapamycin complex 1 signaling pathway.
    Nishida K; Silver PA
    PLoS Biol; 2012; 10(2):e1001269. PubMed ID: 22389629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox Engineering by Ectopic Overexpression of NADH Kinase in Recombinant Pichia pastoris (
    Tomàs-Gamisans M; Andrade CCP; Maresca F; Monforte S; Ferrer P; Albiol J
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31757828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-precipitation of phosphate and iron limits mitochondrial phosphate availability in Saccharomyces cerevisiae lacking the yeast frataxin homologue (YFH1).
    Seguin A; Santos R; Pain D; Dancis A; Camadro JM; Lesuisse E
    J Biol Chem; 2011 Feb; 286(8):6071-9. PubMed ID: 21189251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two sources of mitochondrial NADPH in the yeast Saccharomyces cerevisiae.
    Miyagi H; Kawai S; Murata K
    J Biol Chem; 2009 Mar; 284(12):7553-60. PubMed ID: 19158096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mitochondrial iron exporter genes
    Li L; Bertram S; Kaplan J; Jia X; Ward DM
    J Biol Chem; 2020 Feb; 295(6):1716-1726. PubMed ID: 31896574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reciprocal Regulation of Target of Rapamycin Complex 1 and Potassium Accumulation.
    Primo C; Ferri-Blázquez A; Loewith R; Yenush L
    J Biol Chem; 2017 Jan; 292(2):563-574. PubMed ID: 27895122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frataxin and mitochondrial carrier proteins, Mrs3p and Mrs4p, cooperate in providing iron for heme synthesis.
    Zhang Y; Lyver ER; Knight SA; Lesuisse E; Dancis A
    J Biol Chem; 2005 May; 280(20):19794-807. PubMed ID: 15767258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial genomic dysfunction causes dephosphorylation of Sch9 in the yeast Saccharomyces cerevisiae.
    Kawai S; Urban J; Piccolis M; Panchaud N; De Virgilio C; Loewith R
    Eukaryot Cell; 2011 Oct; 10(10):1367-9. PubMed ID: 21841122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae.
    Zhang J; Vaga S; Chumnanpuen P; Kumar R; Vemuri GN; Aebersold R; Nielsen J
    Mol Syst Biol; 2011 Nov; 7():545. PubMed ID: 22068328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae.
    Outten CE; Culotta VC
    EMBO J; 2003 May; 22(9):2015-24. PubMed ID: 12727869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid Signaling via Pkh1/2 Regulates Fungal CO2 Sensing through the Kinase Sch9.
    Pohlers S; Martin R; Krüger T; Hellwig D; Hänel F; Kniemeyer O; Saluz HP; Van Dijck P; Ernst JF; Brakhage A; Mühlschlegel FA; Kurzai O
    mBio; 2017 Jan; 8(1):. PubMed ID: 28143980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae.
    Reinke A; Anderson S; McCaffery JM; Yates J; Aronova S; Chu S; Fairclough S; Iverson C; Wedaman KP; Powers T
    J Biol Chem; 2004 Apr; 279(15):14752-62. PubMed ID: 14736892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered sterol metabolism in budding yeast affects mitochondrial iron-sulfur (Fe-S) cluster synthesis.
    Ward DM; Chen OS; Li L; Kaplan J; Bhuiyan SA; Natarajan SK; Bard M; Cox JE
    J Biol Chem; 2018 Jul; 293(27):10782-10795. PubMed ID: 29773647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of cardiolipin leads to perturbation of mitochondrial and cellular iron homeostasis.
    Patil VA; Fox JL; Gohil VM; Winge DR; Greenberg ML
    J Biol Chem; 2013 Jan; 288(3):1696-705. PubMed ID: 23192348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering an NADPH/NADP
    Zhang J; Sonnenschein N; Pihl TP; Pedersen KR; Jensen MK; Keasling JD
    ACS Synth Biol; 2016 Dec; 5(12):1546-1556. PubMed ID: 27419466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich's ataxia.
    Auchère F; Santos R; Planamente S; Lesuisse E; Camadro JM
    Hum Mol Genet; 2008 Sep; 17(18):2790-802. PubMed ID: 18562474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae.
    Sariki SK; Sahu PK; Golla U; Singh V; Azad GK; Tomar RS
    FEBS J; 2016 Nov; 283(22):4056-4083. PubMed ID: 27718307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1.
    Martin DE; Soulard A; Hall MN
    Cell; 2004 Dec; 119(7):969-79. PubMed ID: 15620355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of mitochondrial iron homeostasis on cofactor specificity of superoxide dismutase 2.
    Yang M; Cobine PA; Molik S; Naranuntarat A; Lill R; Winge DR; Culotta VC
    EMBO J; 2006 Apr; 25(8):1775-83. PubMed ID: 16601688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential phosphorylation of a regulatory subunit of protein kinase CK2 by target of rapamycin complex 1 signaling and the Cdc-like kinase Kns1.
    Sanchez-Casalongue ME; Lee J; Diamond A; Shuldiner S; Moir RD; Willis IM
    J Biol Chem; 2015 Mar; 290(11):7221-33. PubMed ID: 25631054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.