BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22390194)

  • 1. Electron and spin-density analysis of tirapazamine reduction chemistry.
    Yin J; Glaser R; Gates KS
    Chem Res Toxicol; 2012 Mar; 25(3):620-33. PubMed ID: 22390194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the reaction mechanism of tirapazamine reduction chemistry: unimolecular N-OH homolysis, stepwise dehydration, or triazene ring-opening.
    Yin J; Glaser R; Gates KS
    Chem Res Toxicol; 2012 Mar; 25(3):634-45. PubMed ID: 22390168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spin trapping of radicals other than the *OH radical upon reduction of the anticancer agent tirapazamine by cytochrome P450 reductase.
    Shinde SS; Hay MP; Patterson AV; Denny WA; Anderson RF
    J Am Chem Soc; 2009 Oct; 131(40):14220-1. PubMed ID: 19772319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of 3-amino-1,2,4-benzotriazine 1,4-dioxide antitumor agents to oxidizing species following their one-electron reduction.
    Anderson RF; Shinde SS; Hay MP; Gamage SA; Denny WA
    J Am Chem Soc; 2003 Jan; 125(3):748-56. PubMed ID: 12526674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photochemical and photobiological studies of tirapazamine (SR 4233) and related quinoxaline 1,4-Di-N-oxide analogues.
    Inbaraj JJ; Motten AG; Chignell CF
    Chem Res Toxicol; 2003 Feb; 16(2):164-70. PubMed ID: 12588187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of radicals formed following enzymatic reduction of 3-substituted analogues of the hypoxia-selective cytotoxin 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine).
    Shinde SS; Maroz A; Hay MP; Patterson AV; Denny WA; Anderson RF
    J Am Chem Soc; 2010 Mar; 132(8):2591-9. PubMed ID: 20141134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation of 2-deoxyribose by benzotriazinyl radicals of antitumor 3-amino-1,2,4-benzotriazine 1,4-dioxides.
    Shinde SS; Anderson RF; Hay MP; Gamage SA; Denny WA
    J Am Chem Soc; 2004 Jun; 126(25):7865-74. PubMed ID: 15212534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spin Trapping Hydroxyl and Aryl Radicals of One-Electron Reduced Anticancer Benzotriazine 1,4-Dioxides.
    Qi W; Yadav P; Hong CR; Stevenson RJ; Hay MP; Anderson RF
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35164077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potentiation of the cytotoxicity of the anticancer agent tirapazamine by benzotriazine N-oxides: the role of redox equilibria.
    Anderson RF; Shinde SS; Hay MP; Denny WA
    J Am Chem Soc; 2006 Jan; 128(1):245-9. PubMed ID: 16390153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanism of reaction of radicals with tirapazamine.
    Shi X; Mandel SM; Platz MS
    J Am Chem Soc; 2007 Apr; 129(15):4542-50. PubMed ID: 17381087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using cyclodextrins to encapsulate oxygen-centered and carbon-centered radical adducts: the case of DMPO, PBN, and MNP spin traps.
    Spulber M; Schlick S
    J Phys Chem A; 2010 Jun; 114(21):6217-25. PubMed ID: 20462228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic activation of sulfur mustard leads to oxygen free radical formation.
    Brimfield AA; Soni SD; Trimmer KA; Zottola MA; Sweeney RE; Graham JS
    Free Radic Biol Med; 2012 Feb; 52(4):811-7. PubMed ID: 22206978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microsomal reduction of 3-amino-1,2,4-benzotriazine 1,4-dioxide to a free radical.
    Lloyd RV; Duling DR; Rumyantseva GV; Mason RP; Bridson PK
    Mol Pharmacol; 1991 Sep; 40(3):440-5. PubMed ID: 1654517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of singlet oxygen and hydroxyl radical formation in aqueous goethite suspension using spin-trapping electron paramagnetic resonance (EPR).
    Han SK; Hwang TM; Yoon Y; Kang JW
    Chemosphere; 2011 Aug; 84(8):1095-101. PubMed ID: 21561642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radical properties governing the hypoxia-selective cytotoxicity of antitumor 3-amino-1,2,4-benzotriazine 1,4-dioxides.
    Anderson RF; Shinde SS; Hay MP; Gamage SA; Denny WA
    Org Biomol Chem; 2005 Jun; 3(11):2167-74. PubMed ID: 15917906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of a sandwich-structure assisted, relatively long-lived sulfur-centered three-electron bonded radical anion in the reduction of a bis(1-substituted-uracilyl) disulfide in aqueous solution.
    Wenska G; Filipiak P; Asmus KD; Bobrowski K; Koput J; Marciniak B
    J Phys Chem B; 2008 Aug; 112(32):10045-53. PubMed ID: 18646807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and electronic structure of square-planar nickel II, nickel III and nickel III pi-cation radical complexes with a tetradentate o-phenylenedioxamidate redox-active ligand.
    Carrasco R; Cano J; Ottenwaelder X; Aukauloo A; Journaux Y; Ruiz-GarcĂ­a R
    Dalton Trans; 2005 Aug; (15):2527-38. PubMed ID: 16025172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of superoxide dismutase mimics on radical adduct formation during the reaction between peroxynitrite and thiols--an ESR-spin trapping study.
    Karoui H; Hogg N; Joseph J; Kalyanaraman B
    Arch Biochem Biophys; 1996 Jun; 330(1):115-24. PubMed ID: 8651684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.
    Matsuzaki S; Kotake Y; Humphries KM
    Biochemistry; 2011 Dec; 50(50):10792-803. PubMed ID: 22091587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical and experimental studies of the spin trapping of inorganic radicals by 5,5-dimethyl-1-pyrroline N-oxide (DMPO). 1. Carbon dioxide radical anion.
    Villamena FA; Locigno EJ; Rockenbauer A; Hadad CM; Zweier JL
    J Phys Chem A; 2006 Dec; 110(49):13253-8. PubMed ID: 17149843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.