These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 22390408)

  • 21. Exciton-dissociation and charge-recombination processes in pentacene/C60 solar cells: theoretical insight into the impact of interface geometry.
    Yi Y; Coropceanu V; Brédas JL
    J Am Chem Soc; 2009 Nov; 131(43):15777-83. PubMed ID: 19810727
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding the effect of surface chemistry on charge generation and transport in poly (3-hexylthiophene)/CdSe hybrid solar cells.
    Lek JY; Xi L; Kardynal BE; Wong LH; Lam YM
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):287-92. PubMed ID: 21261268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly efficient hybrid solar cells with tunable dipole at the donor-acceptor interface.
    Fu W; Wang L; Ling J; Li H; Shi M; Xue J; Chen H
    Nanoscale; 2014 Sep; 6(18):10545-50. PubMed ID: 25111908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanocrystal grain growth and device architectures for high-efficiency CdTe ink-based photovoltaics.
    Crisp RW; Panthani MG; Rance WL; Duenow JN; Parilla PA; Callahan R; Dabney MS; Berry JJ; Talapin DV; Luther JM
    ACS Nano; 2014 Sep; 8(9):9063-72. PubMed ID: 25133302
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement of open-circuit voltage and the fill factor in CdTe nanocrystal solar cells by using interface materials.
    Zhu J; Yang Y; Gao Y; Qin D; Wu H; Hou L; Huang W
    Nanotechnology; 2014 Sep; 25(36):365203. PubMed ID: 25140734
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple exciton dissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue.
    Huang J; Huang Z; Yang Y; Zhu H; Lian T
    J Am Chem Soc; 2010 Apr; 132(13):4858-64. PubMed ID: 20218563
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved photovoltaic performances by post-deposition acidic treatments on tetrapod shaped colloidal nanocrystal solids.
    Mastria R; Rizzo A; Nobile C; Kumar S; Maruccio G; Gigli G
    Nanotechnology; 2012 Aug; 23(30):305403. PubMed ID: 22781188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures.
    Shieh F; Saunders AE; Korgel BA
    J Phys Chem B; 2005 May; 109(18):8538-42. PubMed ID: 16852005
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface-state-mediated charge-transfer dynamics in CdTe/CdSe core-shell quantum dots.
    Rawalekar S; Kaniyankandy S; Verma S; Ghosh HN
    Chemphyschem; 2011 Jun; 12(9):1729-35. PubMed ID: 21567706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photovoltaic performance of ultrasmall PbSe quantum dots.
    Ma W; Swisher SL; Ewers T; Engel J; Ferry VE; Atwater HA; Alivisatos AP
    ACS Nano; 2011 Oct; 5(10):8140-7. PubMed ID: 21939281
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The use of size-selective excitation to study photocurrent through junctions containing single-size and multi-size arrays of colloidal CdSe quantum dots.
    Weiss EA; Porter VJ; Chiechi RC; Geyer SM; Bell DC; Bawendi MG; Whitesides GM
    J Am Chem Soc; 2008 Jan; 130(1):83-92. PubMed ID: 18072774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface states in the photoionization of high-quality CdSe core/shell nanocrystals.
    Li S; Steigerwald ML; Brus LE
    ACS Nano; 2009 May; 3(5):1267-73. PubMed ID: 19374391
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving the performance of colloidal quantum-dot-sensitized solar cells.
    Giménez S; Mora-Seró I; Macor L; Guijarro N; Lana-Villarreal T; Gómez R; Diguna LJ; Shen Q; Toyoda T; Bisquert J
    Nanotechnology; 2009 Jul; 20(29):295204. PubMed ID: 19567969
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance.
    Liang Y; Yu L
    Acc Chem Res; 2010 Sep; 43(9):1227-36. PubMed ID: 20853907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantum-dot-sensitized solar cells fabricated by the combined process of the direct attachment of colloidal CdSe quantum dots having a ZnS glue layer and spray pyrolysis deposition.
    Im SH; Lee YH; Seok SI; Kim SW; Kim SW
    Langmuir; 2010 Dec; 26(23):18576-80. PubMed ID: 21069989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Layer-by-layer assembly of sintered CdSe(x)Te1-x nanocrystal solar cells.
    MacDonald BI; Martucci A; Rubanov S; Watkins SE; Mulvaney P; Jasieniak JJ
    ACS Nano; 2012 Jul; 6(7):5995-6004. PubMed ID: 22690798
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanojunction-mediated photocatalytic enhancement in heterostructured CdS/ZnO, CdSe/ZnO, and CdTe/ZnO nanocrystals.
    Eley C; Li T; Liao F; Fairclough SM; Smith JM; Smith G; Tsang SC
    Angew Chem Int Ed Engl; 2014 Jul; 53(30):7838-42. PubMed ID: 24962739
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient exciton funneling in cascaded PbS quantum dot superstructures.
    Xu F; Ma X; Haughn CR; Benavides J; Doty MF; Cloutier SG
    ACS Nano; 2011 Dec; 5(12):9950-7. PubMed ID: 22085035
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CdSe quantum dot-fullerene hybrid nanocomposite for solar energy conversion: electron transfer and photoelectrochemistry.
    Bang JH; Kamat PV
    ACS Nano; 2011 Dec; 5(12):9421-7. PubMed ID: 22107780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.