These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 22391010)

  • 1. Novel Prunus rootstock somaclonal variants with divergent ability to tolerate waterlogging.
    Pistelli L; Iacona C; Miano D; Cirilli M; Colao MC; Mensuali-Sodi A; Muleo R
    Tree Physiol; 2012 Mar; 32(3):355-68. PubMed ID: 22391010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological and biochemical parameters controlling waterlogging stress tolerance in Prunus before and after drainage.
    Amador ML; Sancho S; Bielsa B; Gomez-Aparisi J; Rubio-Cabetas MJ
    Physiol Plant; 2012 Apr; 144(4):357-68. PubMed ID: 22221115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress.
    Jiménez S; Dridi J; Gutiérrez D; Moret D; Irigoyen JJ; Moreno MA; Gogorcena Y
    Tree Physiol; 2013 Oct; 33(10):1061-75. PubMed ID: 24162335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global gene expression responses to waterlogging in roots and leaves of cotton (Gossypium hirsutum L.).
    Christianson JA; Llewellyn DJ; Dennis ES; Wilson IW
    Plant Cell Physiol; 2010 Jan; 51(1):21-37. PubMed ID: 19923201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preformed and induced mechanisms underlies the differential responses of Prunus rootstock to hypoxia.
    Rubio-Cabetas MJ; Pons C; Bielsa B; Amador ML; Marti C; Granell A
    J Plant Physiol; 2018 Sep; 228():134-149. PubMed ID: 29913428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of adventitious roots in water relations of tamarack (Larix laricina) seedlings exposed to flooding.
    Calvo-Polanco M; Señorans J; Zwiazek JJ
    BMC Plant Biol; 2012 Jun; 12():99. PubMed ID: 22738296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrasting growth and adaptive responses of two oak species to flooding stress: role of non-symbiotic haemoglobin.
    Parent C; Crèvecoeur M; Capelli N; Dat JF
    Plant Cell Environ; 2011 Jul; 34(7):1113-26. PubMed ID: 21410709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetraploid Rangpur lime rootstock increases drought tolerance via enhanced constitutive root abscisic acid production.
    Allario T; Brumos J; Colmenero-Flores JM; Iglesias DJ; Pina JA; Navarro L; Talon M; Ollitrault P; Morillon R
    Plant Cell Environ; 2013 Apr; 36(4):856-68. PubMed ID: 23050986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of flooding stress responsible cascades in root and hypocotyl of soybean using proteome analysis.
    Komatsu S; Sugimoto T; Hoshino T; Nanjo Y; Furukawa K
    Amino Acids; 2010 Mar; 38(3):729-38. PubMed ID: 19333721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of root pressurization on water relations, shoot growth, and leaf gas exchange of peach (Prunus persica) trees on rootstocks with differing growth potential and hydraulic conductance.
    Solari LI; DeJong TM
    J Exp Bot; 2006; 57(9):1981-9. PubMed ID: 16690626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of flooding on C metabolism of flood-tolerant (Quercus robur) and non-tolerant (Fagus sylvatica) tree species.
    Ferner E; Rennenberg H; Kreuzwieser J
    Tree Physiol; 2012 Feb; 32(2):135-45. PubMed ID: 22367762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress.
    Yin X; Sakata K; Komatsu S
    J Proteome Res; 2014 Dec; 13(12):5618-34. PubMed ID: 25316100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques.
    Komatsu S; Yamamoto R; Nanjo Y; Mikami Y; Yunokawa H; Sakata K
    J Proteome Res; 2009 Oct; 8(10):4766-78. PubMed ID: 19658438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Root responses to flooding.
    Sauter M
    Curr Opin Plant Biol; 2013 Jun; 16(3):282-6. PubMed ID: 23608517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and anatomical adaptations induced by flooding in Cotula coronopifolia.
    Smaoui A; Jouini J; Rabhi M; Bouzaien G; Albouchi A; Abdelly C
    Acta Biol Hung; 2011 Jun; 62(2):182-93. PubMed ID: 21555270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana.
    Licausi F; van Dongen JT; Giuntoli B; Novi G; Santaniello A; Geigenberger P; Perata P
    Plant J; 2010 Apr; 62(2):302-15. PubMed ID: 20113439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flooding tolerance of forage legumes.
    Striker GG; Colmer TD
    J Exp Bot; 2017 Apr; 68(8):1851-1872. PubMed ID: 27325893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flooding tolerance: O2 sensing and survival strategies.
    Voesenek LA; Bailey-Serres J
    Curr Opin Plant Biol; 2013 Oct; 16(5):647-53. PubMed ID: 23830867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide content is associated with tolerance to bicarbonate-induced chlorosis in micropropagated Prunus explants.
    Cellini A; Corpas FJ; Barroso JB; Masia A
    J Plant Physiol; 2011 Sep; 168(13):1543-9. PubMed ID: 21507506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water stress induces up-regulation of DOF1 and MIF1 transcription factors and down-regulation of proteins involved in secondary metabolism in amaranth roots (Amaranthus hypochondriacus L.).
    Huerta-Ocampo JA; León-Galván MF; Ortega-Cruz LB; Barrera-Pacheco A; De León-Rodríguez A; Mendoza-Hernández G; de la Rosa AP
    Plant Biol (Stuttg); 2011 May; 13(3):472-82. PubMed ID: 21489098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.