These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22391391)

  • 21. Low-temperature synthesis of CuInSe2 nanotube array on conducting glass substrates for solar cell application.
    Xu J; Luan CY; Tang YB; Chen X; Zapien JA; Zhang WJ; Kwong HL; Meng XM; Lee ST; Lee CS
    ACS Nano; 2010 Oct; 4(10):6064-70. PubMed ID: 20925392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon-Impurity Affected Depth Elemental Distribution in Solution-Processed Inorganic Thin Films for Solar Cell Application.
    Rehan S; Kim KY; Han J; Eo YJ; Gwak J; Ahn SK; Yun JH; Yoon K; Cho A; Ahn S
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5261-72. PubMed ID: 26817680
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystallization Behavior of Solution-Processed CIGSe Thin Film Semiconductor by Stepwise Annealing Process.
    Park MS; Sung SJ; Kim DH
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2490-4. PubMed ID: 26413694
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of Annealing Pressure on Microstructure and Conversion Efficiency for Electrodeposited CuInSe₂ Absorbers.
    Lee WH; Chang TW; Su YH
    J Nanosci Nanotechnol; 2017 Jan; 17(1):773-79. PubMed ID: 29634163
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Liquid-phase pulsed laser ablation and electrophoretic deposition for chalcopyrite thin-film solar cell application.
    Guo W; Liu B
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):7036-42. PubMed ID: 23206317
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cu
    Lai FI; Yang JF; Chen WC; Kuo SY
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40224-40234. PubMed ID: 29072439
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation pathway of CuInSe2 nanocrystals for solar cells.
    Kar M; Agrawal R; Hillhouse HW
    J Am Chem Soc; 2011 Nov; 133(43):17239-47. PubMed ID: 21879767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Suppressed Formation of Conductive Phases in One-Pot Electrodeposited CuInSe2 by Tuning Se Concentration in Aqueous Electrolyte.
    Lee BS; Park SY; Lee JM; Jeong JH; Kim JY; Chung CH; Lee DK
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24585-93. PubMed ID: 27585315
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of solution processed 3D nanostructured CuInGaS₂ thin film solar cells.
    Chu VB; Cho JW; Park SJ; Hwang YJ; Park HK; Do YR; Min BK
    Nanotechnology; 2014 Mar; 25(12):125401. PubMed ID: 24569126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Growth of Cu2ZnSnSe4 Film under Controllable Se Vapor Composition and Impact of Low Cu Content on Solar Cell Efficiency.
    Li J; Wang H; Wu L; Chen C; Zhou Z; Liu F; Sun Y; Han J; Zhang Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10283-92. PubMed ID: 27058738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CZTSe solar cells prepared by electrodeposition of Cu/Sn/Zn stack layer followed by selenization at low Se pressure.
    Yao L; Ao J; Jeng MJ; Bi J; Gao S; He Q; Zhou Z; Sun G; Sun Y; Chang LB; Chen JW
    Nanoscale Res Lett; 2014; 9(1):678. PubMed ID: 25593559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel preparation of small TiO₂ nanoparticle and its application to dye-sensitized solar cells with binder-free paste at low temperature.
    Fan K; Gong C; Peng T; Chen J; Xia J
    Nanoscale; 2011 Sep; 3(9):3900-6. PubMed ID: 21845275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of nanocrystal ink based superstrate-type CuInS₂ thin film solar cells.
    Cho JW; Park SJ; Kim W; Min BK
    Nanotechnology; 2012 Jul; 23(26):265401. PubMed ID: 22699212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase-Separation-Induced Crystal Growth for Large-Grained Cu
    Huang L; Wei S; Pan D
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35069-35078. PubMed ID: 30247020
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Composition Control of CuInSe2 Thin Films Using Cu/In Stacked Structure in Coulometric Controlled Electrodeposition Process.
    Kwon YH; Do HW; Kim H; Cho HK
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7836-40. PubMed ID: 26726424
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spray pyrolysis of CuIn(S,Se)2 solar cells with 5.9% efficiency: a method to prevent Mo oxidation in ambient atmosphere.
    Ho JC; Zhang T; Lee KK; Batabyal SK; Tok AI; Wong LH
    ACS Appl Mater Interfaces; 2014 May; 6(9):6638-43. PubMed ID: 24697706
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-temperature direct conversion of Cu-In films to CuInSe₂ via selenization reaction in supercritical fluid.
    Tomai T; Rangappa D; Honma I
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3268-71. PubMed ID: 21838244
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel synthesis of a CuInSe2 thin film from electrodeposited Cu-Se-In-Se precursors with three steps annealing.
    Hu SY; Lee WH; Chang SC; Wang YL
    J Nanosci Nanotechnol; 2012 Sep; 12(9):7226-32. PubMed ID: 23035457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solvent-free synthesis of Cu2ZnSnS4 nanocrystals: a facile, green, up-scalable route for low cost photovoltaic cells.
    Park BI; Hwang Y; Lee SY; Lee JS; Park JK; Jeong J; Kim JY; Kim B; Cho SH; Lee DK
    Nanoscale; 2014 Oct; 6(20):11703-11. PubMed ID: 25091974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Doping for speed: colloidal nanoparticles for thin-film optoelectronics.
    Noone KM; Ginger DS
    ACS Nano; 2009 Feb; 3(2):261-5. PubMed ID: 19236059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.