These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22391523)

  • 1. From the heart to the mind's eye: cardiac vagal tone is related to visual perception of fearful faces at high spatial frequency.
    Park G; Van Bavel JJ; Vasey MW; Egan EJ; Thayer JF
    Biol Psychol; 2012 May; 90(2):171-8. PubMed ID: 22391523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac vagal tone predicts inhibited attention to fearful faces.
    Park G; Van Bavel JJ; Vasey MW; Thayer JF
    Emotion; 2012 Dec; 12(6):1292-302. PubMed ID: 22642338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac vagal tone predicts attentional engagement to and disengagement from fearful faces.
    Park G; Van Bavel JJ; Vasey MW; Thayer JF
    Emotion; 2013 Aug; 13(4):645-56. PubMed ID: 23914769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac vagal tone is correlated with selective attention to neutral distractors under load.
    Park G; Vasey MW; Van Bavel JJ; Thayer JF
    Psychophysiology; 2013 Apr; 50(4):398-406. PubMed ID: 23418911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of spatial frequency and location of fearful faces on human amygdala activity.
    Morawetz C; Baudewig J; Treue S; Dechent P
    Brain Res; 2011 Jan; 1371():87-99. PubMed ID: 21059346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased spatial frequency sensitivities for processing faces in male patients with chronic schizophrenia.
    Obayashi C; Nakashima T; Onitsuka T; Maekawa T; Hirano Y; Hirano S; Oribe N; Kaneko K; Kanba S; Tobimatsu S
    Clin Neurophysiol; 2009 Aug; 120(8):1525-33. PubMed ID: 19632149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individual differences in cardiac vagal tone are associated with differential neural responses to facial expressions at different spatial frequencies: an ERP and sLORETA study.
    Park G; Moon E; Kim DW; Lee SH
    Cogn Affect Behav Neurosci; 2012 Dec; 12(4):777-93. PubMed ID: 22815040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of impaired facial affect recognition with basic facial and visual processing deficits in schizophrenia.
    Norton D; McBain R; Holt DJ; Ongur D; Chen Y
    Biol Psychiatry; 2009 Jun; 65(12):1094-8. PubMed ID: 19268917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of spatial frequency information for ERP components sensitive to faces and emotional facial expression.
    Holmes A; Winston JS; Eimer M
    Brain Res Cogn Brain Res; 2005 Oct; 25(2):508-20. PubMed ID: 16168629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. When tonic cardiac vagal tone predicts changes in phasic vagal tone: the role of fear and perceptual load.
    Park G; Vasey MW; Van Bavel JJ; Thayer JF
    Psychophysiology; 2014 May; 51(5):419-26. PubMed ID: 24571084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fear selectively modulates visual mental imagery and visual perception.
    Borst G; Kosslyn SM
    Q J Exp Psychol (Hove); 2010 May; 63(5):833-9. PubMed ID: 20182955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patients with schizophrenia are biased toward low spatial frequency to decode facial expression at a glance.
    Laprévote V; Oliva A; Delerue C; Thomas P; Boucart M
    Neuropsychologia; 2010 Dec; 48(14):4164-8. PubMed ID: 20955721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resting parietal EEG asymmetry and cardiac vagal tone predict attentional control.
    Balle M; Bornas X; Tortella-Feliu M; Llabrés J; Morillas-Romero A; Aguayo-Siquier B; Gelabert JM
    Biol Psychol; 2013 May; 93(2):257-61. PubMed ID: 23459226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is the early modulation of brain activity by fearful facial expressions primarily mediated by coarse low spatial frequency information?
    Vlamings PH; Goffaux V; Kemner C
    J Vis; 2009 May; 9(5):12.1-13. PubMed ID: 19757890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fearful faces impact in peripheral vision: behavioral and neural evidence.
    Rigoulot S; D'Hondt F; Defoort-Dhellemmes S; Despretz P; Honoré J; Sequeira H
    Neuropsychologia; 2011 Jun; 49(7):2013-21. PubMed ID: 21453712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An amygdala response to fearful faces with covered eyes.
    Asghar AU; Chiu YC; Hallam G; Liu S; Mole H; Wright H; Young AW
    Neuropsychologia; 2008; 46(9):2364-70. PubMed ID: 18479717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mandatory processing of irrelevant fearful face features in visual search.
    Fenker DB; Heipertz D; Boehler CN; Schoenfeld MA; Noesselt T; Heinze HJ; Duezel E; Hopf JM
    J Cogn Neurosci; 2010 Dec; 22(12):2926-38. PubMed ID: 19702468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of object-based attention on evoked potentials to fearful and disgusted faces.
    Santos IM; Iglesias J; Olivares EI; Young AW
    Neuropsychologia; 2008 Apr; 46(5):1468-79. PubMed ID: 18295286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural correlates of top-down processing in emotion perception: an ERP study of emotional faces in white noise versus noise-alone stimuli.
    Lee KY; Lee TH; Yoon SJ; Cho YS; Choi JS; Kim HT
    Brain Res; 2010 Jun; 1337():56-63. PubMed ID: 20381474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High vagally mediated resting-state heart rate variability is associated with superior action cascading.
    Colzato LS; Steenbergen L
    Neuropsychologia; 2017 Nov; 106():1-6. PubMed ID: 28866318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.