BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 22391693)

  • 1. Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol--a review.
    Laluce C; Schenberg AC; Gallardo JC; Coradello LF; Pombeiro-Sponchiado SR
    Appl Biochem Biotechnol; 2012 Apr; 166(8):1908-26. PubMed ID: 22391693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xylose Fermentation by Saccharomyces cerevisiae: Challenges and Prospects.
    Moysés DN; Reis VC; de Almeida JR; de Moraes LM; Torres FA
    Int J Mol Sci; 2016 Feb; 17(3):207. PubMed ID: 26927067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation.
    Jansen MLA; Bracher JM; Papapetridis I; Verhoeven MD; de Bruijn H; de Waal PP; van Maris AJA; Klaassen P; Pronk JT
    FEMS Yeast Res; 2017 Aug; 17(5):. PubMed ID: 28899031
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Cámara E; Mormino M; Siewers V; Nygård Y
    Appl Environ Microbiol; 2024 May; 90(5):e0233023. PubMed ID: 38587374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xylo-Oligosaccharide Utilization by Engineered
    Procópio DP; Kendrick E; Goldbeck R; Damasio ARL; Franco TT; Leak DJ; Jin YS; Basso TO
    Front Bioeng Biotechnol; 2022; 10():825981. PubMed ID: 35242749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation.
    Oshoma CE; Greetham D; Louis EJ; Smart KA; Phister TG; Powell C; Du C
    PLoS One; 2015; 10(8):e0135626. PubMed ID: 26284784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered yeasts and lignocellulosic biomaterials: shaping a new dimension for biorefinery and global bioeconomy.
    Asemoloye MD; Bello TS; Oladoye PO; Remilekun Gbadamosi M; Babarinde SO; Ebenezer Adebami G; Olowe OM; Temporiti MEE; Wanek W; Marchisio MA
    Bioengineered; 2023 Dec; 14(1):2269328. PubMed ID: 37850721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cellulosomal yeast reaction system of lignin-degrading enzymes for cellulosic ethanol fermentation.
    Ye Y; Liu H; Wang Z; Qi Q; Du J; Tian S
    Biotechnol Lett; 2024 Apr; ():. PubMed ID: 38607604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Saccharomyces cerevisiae for application in integrated bioprocessing biorefineries.
    Minnaar LS; Kruger F; Fortuin J; Hoffmeester LJ; den Haan R
    Curr Opin Biotechnol; 2024 Feb; 85():103030. PubMed ID: 38091873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leveraging Genetic-Background Effects in Saccharomyces cerevisiae To Improve Lignocellulosic Hydrolysate Tolerance.
    Sardi M; Rovinskiy N; Zhang Y; Gasch AP
    Appl Environ Microbiol; 2016 Oct; 82(19):5838-49. PubMed ID: 27451446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth inhibition of S. cerevisiae, B. subtilis, and E. coli by lignocellulosic and fermentation products.
    Pereira JP; Verheijen PJ; Straathof AJ
    Appl Microbiol Biotechnol; 2016 Nov; 100(21):9069-9080. PubMed ID: 27262569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Withdrawn: Impact of inhibitors on commercial cellulases in lignocellulosic ethanol production.
    Protein Pept Lett; 2018 Jan; ():. PubMed ID: 29359653
    [No Abstract]   [Full Text] [Related]  

  • 13. Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation.
    Radecka D; Mukherjee V; Mateo RQ; Stojiljkovic M; Foulquié-Moreno MR; Thevelein JM
    FEMS Yeast Res; 2015 Sep; 15(6):. PubMed ID: 26126524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicellulose from biomass: a perspective.
    Kricka W; Fitzpatrick J; Bond U
    Front Microbiol; 2014; 5():174. PubMed ID: 24795706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism.
    Kim SR; Park YC; Jin YS; Seo JH
    Biotechnol Adv; 2013 Nov; 31(6):851-61. PubMed ID: 23524005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of xylose-utilizing yeasts from oil palm waste for xylitol and ethanol production.
    Kusumawati N; Sumarlan SH; Zubaidah E; Wardani AK
    Bioresour Bioprocess; 2023 Oct; 10(1):71. PubMed ID: 38647966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathway engineering strategies for improved product yield in yeast-based industrial ethanol production.
    van Aalst ACA; de Valk SC; van Gulik WM; Jansen MLA; Pronk JT; Mans R
    Synth Syst Biotechnol; 2022 Mar; 7(1):554-566. PubMed ID: 35128088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QTL mapping of a Brazilian bioethanol strain links the cell wall protein-encoding gene GAS1 to low pH tolerance in S. cerevisiae.
    Coradini ALV; da Silveira Bezerra de Mello F; Furlan M; Maneira C; Carazzolle MF; Pereira GAG; Teixeira GS
    Biotechnol Biofuels; 2021 Dec; 14(1):239. PubMed ID: 34915919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Lignocellulose Pretreatment By-Products on
    Kłosowski G; Mikulski D
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33557207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the xylose paradox in Saccharomyces cerevisiae through in vivo sugar signalomics of targeted deletants.
    Osiro KO; Borgström C; Brink DP; Fjölnisdóttir BL; Gorwa-Grauslund MF
    Microb Cell Fact; 2019 May; 18(1):88. PubMed ID: 31122246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.