BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 22392735)

  • 1. Five percent oxygen tension is not beneficial for neocartilage formation in scaffold-free cell cultures.
    Qu C; Lindeberg H; Ylärinne JH; Lammi MJ
    Cell Tissue Res; 2012 Apr; 348(1):109-17. PubMed ID: 22392735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypertonic conditions enhance cartilage formation in scaffold-free primary chondrocyte cultures.
    Ylärinne JH; Qu C; Lammi MJ
    Cell Tissue Res; 2014 Nov; 358(2):541-50. PubMed ID: 25107609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaffold-free approach produces neocartilage tissue of similar quality as the use of HyStem™ and Hydromatrix™ scaffolds.
    Ylärinne JH; Qu C; Lammi MJ
    J Mater Sci Mater Med; 2017 Apr; 28(4):59. PubMed ID: 28210971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucosamine sulphate does not increase extracellular matrix production at low oxygen tension.
    Qu CJ; Pöytäkangas T; Jauhiainen M; Auriola S; Lammi MJ
    Cell Tissue Res; 2009 Jul; 337(1):103-11. PubMed ID: 19440735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane-based cultures generate scaffold-free neocartilage in vitro: influence of growth factors.
    Mayer-Wagner S; Schiergens TS; Sievers B; Docheva D; Schieker M; Betz OB; Jansson V; Müller PE
    Tissue Eng Part A; 2010 Feb; 16(2):513-21. PubMed ID: 19715388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of reduced oxygen tension and long-term mechanical stimulation on chondrocyte-polymer constructs.
    Wernike E; Li Z; Alini M; Grad S
    Cell Tissue Res; 2008 Feb; 331(2):473-83. PubMed ID: 17957384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gelatin-based haemostyptic Spongostan as a possible three-dimensional scaffold for a chondrocyte matrix?: an experimental study with bovine chondrocytes.
    Anders JO; Mollenhauer J; Beberhold A; Kinne RW; Venbrocks RA
    J Bone Joint Surg Br; 2009 Mar; 91(3):409-16. PubMed ID: 19258622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bovine chondrocyte behaviour in three-dimensional type I collagen gel in terms of gel contraction, proliferation and gene expression.
    Galois L; Hutasse S; Cortial D; Rousseau CF; Grossin L; Ronziere MC; Herbage D; Freyria AM
    Biomaterials; 2006 Jan; 27(1):79-90. PubMed ID: 16026827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of cartilage extracellular matrix molecules on cell phenotype and neocartilage formation.
    Grogan SP; Chen X; Sovani S; Taniguchi N; Colwell CW; Lotz MK; D'Lima DD
    Tissue Eng Part A; 2014 Jan; 20(1-2):264-74. PubMed ID: 23962090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cartilage engineering using cell-derived extracellular matrix scaffold in vitro.
    Jin CZ; Choi BH; Park SR; Min BH
    J Biomed Mater Res A; 2010 Mar; 92(4):1567-77. PubMed ID: 19437434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A porous PCL scaffold promotes the human chondrocytes redifferentiation and hyaline-specific extracellular matrix protein synthesis.
    Garcia-Giralt N; Izquierdo R; Nogués X; Perez-Olmedilla M; Benito P; Gómez-Ribelles JL; Checa MA; Suay J; Caceres E; Monllau JC
    J Biomed Mater Res A; 2008 Jun; 85(4):1082-9. PubMed ID: 17937412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Potential of chondrogenesis of bone marrow stromal cells co-cultured with chondrocytes on biodegradable scaffold: in vivo experiment with pigs and mice].
    Liu X; Zhou GD; Lü XJ; Liu TY; Zhang WJ; Liu W; Cao YL
    Zhonghua Yi Xue Za Zhi; 2007 Jul; 87(27):1929-33. PubMed ID: 17923021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expansion of human articular chondrocytes and formation of tissue-engineered cartilage: a step towards exploring a potential use of matrix-induced cell therapy.
    Munirah S; Samsudin OC; Aminuddin BS; Ruszymah BH
    Tissue Cell; 2010 Oct; 42(5):282-92. PubMed ID: 20810142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: implications for engineering cartilage tissue.
    Risbud M; Ringe J; Bhonde R; Sittinger M
    Cell Transplant; 2001; 10(8):755-63. PubMed ID: 11814119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional poly(1,8-octanediol-co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes.
    Jeong CG; Zhang H; Hollister SJ
    Acta Biomater; 2011 Feb; 7(2):505-14. PubMed ID: 20807597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering.
    Eglin D; Grad S; Gogolewski S; Alini M
    J Biomed Mater Res A; 2010 Jan; 92(1):393-408. PubMed ID: 19191318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of oxygen and culture system on in vitro propagation and redifferentiation of osteoarthritic human articular chondrocytes.
    Schrobback K; Klein TJ; Crawford R; Upton Z; Malda J; Leavesley DI
    Cell Tissue Res; 2012 Mar; 347(3):649-63. PubMed ID: 21638206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo cartilage tissue engineering using a cell-derived extracellular matrix scaffold.
    Jin CZ; Park SR; Choi BH; Park K; Min BH
    Artif Organs; 2007 Mar; 31(3):183-92. PubMed ID: 17343693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chondrocytes from patients with osteoarthritis express typical extracellular matrix molecules once grown onto a three-dimensional hyaluronan-based scaffold.
    Cavallo C; Desando G; Facchini A; Grigolo B
    J Biomed Mater Res A; 2010 Apr; 93(1):86-95. PubMed ID: 19484766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-butyryl glucosamine increases matrix gene expression by chondrocytes.
    Poustie MW; Carran J; McEleney K; Dixon SJ; Anastassiades TP; Bernier SM
    J Pharmacol Exp Ther; 2004 Nov; 311(2):610-6. PubMed ID: 15240824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.