These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 22392808)

  • 1. Fluorescent assay for directed evolution of perhydrolases.
    Despotovic D; Vojcic L; Prodanovic R; Martinez R; Maurer KH; Schwaneberg U
    J Biomol Screen; 2012 Jul; 17(6):796-805. PubMed ID: 22392808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reengineering of subtilisin Carlsberg for oxidative resistance.
    Vojcic L; Despotovic D; Maurer KH; Zacharias M; Bocola M; Martinez R; Schwaneberg U
    Biol Chem; 2013 Jan; 394(1):79-87. PubMed ID: 23096572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A flow cytometry-based screening system for directed evolution of proteases.
    Tu R; Martinez R; Prodanovic R; Klein M; Schwaneberg U
    J Biomol Screen; 2011 Mar; 16(3):285-94. PubMed ID: 21335599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directed evolution of subtilisin E into a highly active and guanidinium chloride- and sodium dodecylsulfate-tolerant protease.
    Li Z; Roccatano D; Lorenz M; Schwaneberg U
    Chembiochem; 2012 Mar; 13(5):691-9. PubMed ID: 22408062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redirecting catalysis from proteolysis to perhydrolysis in subtilisin Carlsberg.
    Despotovic D; Vojcic L; Blanusa M; Maurer KH; Zacharias M; Bocola M; Martinez R; Schwaneberg U
    J Biotechnol; 2013 Sep; 167(3):279-86. PubMed ID: 23835157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed evolution study of temperature adaptation in a psychrophilic enzyme.
    Miyazaki K; Wintrode PL; Grayling RA; Rubingh DN; Arnold FH
    J Mol Biol; 2000 Apr; 297(4):1015-26. PubMed ID: 10736234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrahigh-throughput FACS-based screening for directed enzyme evolution.
    Yang G; Withers SG
    Chembiochem; 2009 Nov; 10(17):2704-15. PubMed ID: 19780076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screens for active and stereoselective hydrolytic enzymes.
    Böttcher D; Schmidt M; Bornscheuer UT
    Methods Mol Biol; 2010; 668():169-76. PubMed ID: 20830563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A strategy for in vivo screening of subtilisin E reaction specificity in E. coli periplasm.
    Sroga GE; Dordick JS
    Biotechnol Bioeng; 2002 Jun; 78(7):761-9. PubMed ID: 12001168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Design and application of high-throughput screening tools: a review].
    Tang S; Liang C; Jiang P
    Sheng Wu Gong Cheng Xue Bao; 2012 Jul; 28(7):781-8. PubMed ID: 23167190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverting enantioselectivity of Burkholderia gladioli esterase EstB by directed and designed evolution.
    Ivancic M; Valinger G; Gruber K; Schwab H
    J Biotechnol; 2007 Mar; 129(1):109-22. PubMed ID: 17147964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directed arginine deiminase evolution for efficient inhibition of arginine-auxotrophic melanomas.
    Cheng F; Zhu L; Lue H; Bernhagen J; Schwaneberg U
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1237-47. PubMed ID: 25104032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-throughput colorimetric assay for screening halohydrin dehalogenase saturation mutagenesis libraries.
    Tang L; Li Y; Wang X
    J Biotechnol; 2010 Jun; 147(3-4):164-8. PubMed ID: 20399816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Directed evolution of Thermophilic esterase from the archaeon Aeropyrum pemix K1].
    Wang QY; Yang GY; Liu YL; Wang YP; Feng Y
    Wei Sheng Wu Xue Bao; 2006 Apr; 46(2):259-62. PubMed ID: 16736588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput screening system based on phenolics-responsive transcription activator for directed evolution of organophosphate-degrading enzymes.
    Jeong YS; Choi SL; Kyeong HH; Kim JH; Kim EJ; Pan JG; Rha E; Song JJ; Lee SG; Kim HS
    Protein Eng Des Sel; 2012 Nov; 25(11):725-31. PubMed ID: 23077277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput assays for lipases and esterases.
    Schmidt M; Bornscheuer UT
    Biomol Eng; 2005 Jun; 22(1-3):51-6. PubMed ID: 15857783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laboratory evolution of P450 BM3 for mediated electron transfer yielding an activity-improved and reductase-independent variant.
    Nazor J; Dannenmann S; Adjei RO; Fordjour YB; Ghampson IT; Blanusa M; Roccatano D; Schwaneberg U
    Protein Eng Des Sel; 2008 Jan; 21(1):29-35. PubMed ID: 18093991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability and activity improvement of cephalosporin esterase EstB from Burkholderia gladioli by directed evolution and structural interpretation of muteins.
    Valinger G; Hermann M; Wagner UG; Schwab H
    J Biotechnol; 2007 Mar; 129(1):98-108. PubMed ID: 17137667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive assay for laboratory evolution of hydroxylases toward aromatic and heterocyclic compounds.
    Wong TS; Wu N; Roccatano D; Zacharias M; Schwaneberg U
    J Biomol Screen; 2005 Apr; 10(3):246-52. PubMed ID: 15809320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered NADH-dependent GRE2 from Saccharomyces cerevisiae by directed enzyme evolution enhances HMF reduction using additional cofactor NADPH.
    Moon J; Liu ZL
    Enzyme Microb Technol; 2012 Feb; 50(2):115-20. PubMed ID: 22226197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.