These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 22392811)

  • 1. Surface-grafted polymer-assisted electroless deposition of metals for flexible and stretchable electronics.
    Liu X; Zhou X; Li Y; Zheng Z
    Chem Asian J; 2012 May; 7(5):862-70. PubMed ID: 22392811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroless Deposition Metals on Poly(dimethylsiloxane) with Strong Adhesion As Flexible and Stretchable Conductive Materials.
    Zhang FT; Xu L; Chen JH; Zhao B; Fu XZ; Sun R; Chen Q; Wong CP
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):2075-2082. PubMed ID: 29253331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective Electroless Metallization of Micro- and Nanopatterns via Poly(dopamine) Modification and Palladium Nanoparticle Catalysis for Flexible and Stretchable Electronic Applications.
    Cai J; Zhang C; Khan A; Wang L; Li WD
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28754-28763. PubMed ID: 30084253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymer-Assisted Metal Deposition (PAMD) for Flexible and Wearable Electronics: Principle, Materials, Printing, and Devices.
    Li P; Zhang Y; Zheng Z
    Adv Mater; 2019 Sep; 31(37):e1902987. PubMed ID: 31304644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer-assisted metal deposition (PAMD): a full-solution strategy for flexible, stretchable, compressible, and wearable metal conductors.
    Yu Y; Yan C; Zheng Z
    Adv Mater; 2014 Aug; 26(31):5508-16. PubMed ID: 24458846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adhesive lithography for fabricating organic electronic and optoelectronics devices.
    Wang Z; Xing R; Yu X; Han Y
    Nanoscale; 2011 Jul; 3(7):2663-78. PubMed ID: 21698322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic anchor for surface-initiated polymerization from metal substrates.
    Fan X; Lin L; Dalsin JL; Messersmith PB
    J Am Chem Soc; 2005 Nov; 127(45):15843-7. PubMed ID: 16277527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug releasing polymer thin films: new era of surface-mediated drug delivery.
    Zelikin AN
    ACS Nano; 2010 May; 4(5):2494-509. PubMed ID: 20423067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-selective electroless nickel plating on patterned thin films of macromolecular metal complexes.
    Kimura M; Yamagiwa H; Asakawa D; Noguchi M; Kurashina T; Fukawa T; Shirai H
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3714-7. PubMed ID: 21069972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective electroless metallization of patterned polymeric films for lithography applications.
    Zabetakis D; Dressick WJ
    ACS Appl Mater Interfaces; 2009 Jan; 1(1):4-25. PubMed ID: 20355746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Nature-Inspired, Flexible Substrate Strategy for Future Wearable Electronics.
    Zhu C; Chalmers E; Chen L; Wang Y; Xu BB; Li Y; Liu X
    Small; 2019 Aug; 15(35):e1902440. PubMed ID: 31215162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversibly stretchable transparent conductive coatings of spray-deposited silver nanowires.
    Akter T; Kim WS
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):1855-9. PubMed ID: 22471630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positive and negative TiO2 micropatterns on organic polymer substrates.
    Yang P; Yang M; Zou S; Xie J; Yang W
    J Am Chem Soc; 2007 Feb; 129(6):1541-52. PubMed ID: 17243675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile Fabrication of Ultra-Stretchable Metallic Nanocluster Films for Wearable Electronics.
    Venugopalan V; Lamboll R; Joshi D; Narayan KS
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):28010-28018. PubMed ID: 28703571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the mechanism of nickel electroless deposition on functionalized self-assembled monolayers.
    Shi Z; Walker AV
    Langmuir; 2011 Jun; 27(11):6932-9. PubMed ID: 21553831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-mobility ultrathin semiconducting films prepared by spin coating.
    Mitzi DB; Kosbar LL; Murray CE; Copel M; Afzali A
    Nature; 2004 Mar; 428(6980):299-303. PubMed ID: 15029191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aqueous and air-compatible fabrication of high-performance conductive textiles.
    Wang X; Yan C; Hu H; Zhou X; Guo R; Liu X; Xie Z; Huang Z; Zheng Z
    Chem Asian J; 2014 Aug; 9(8):2170-7. PubMed ID: 24867263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic Patterning of Metal Structures for Flexible Conductors by In Situ Polymer-Assisted Electroless Deposition.
    Liang S; Li Y; Zhou T; Yang J; Zhou X; Zhu T; Huang J; Zhu J; Zhu D; Liu Y; He C; Zhang J; Zhou X
    Adv Sci (Weinh); 2017 Feb; 4(2):1600313. PubMed ID: 28251052
    [No Abstract]   [Full Text] [Related]  

  • 20. Polymer Surface Engineering for Efficient Printing of Highly Conductive Metal Nanoparticle Inks.
    Agina EV; Sizov AS; Yablokov MY; Borshchev OV; Bessonov AA; Kirikova MN; Bailey MJ; Ponomarenko SA
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11755-64. PubMed ID: 25984650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.