These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1109 related articles for article (PubMed ID: 22392838)
1. Rat bone marrow stromal cells-seeded porous gelatin/tricalcium phosphate/oligomeric proanthocyanidins composite scaffold for bone repair. Chen KY; Chung CM; Chen YS; Bau DT; Yao CH J Tissue Eng Regen Med; 2013 Sep; 7(9):708-19. PubMed ID: 22392838 [TBL] [Abstract][Full Text] [Related]
2. Autologous bone marrow stromal cells loaded onto porous gelatin scaffolds containing Drynaria fortunei extract for bone repair. Chen KY; Dong GC; Hsu CY; Chen YS; Yao CH J Biomed Mater Res A; 2013 Apr; 101(4):954-62. PubMed ID: 22965916 [TBL] [Abstract][Full Text] [Related]
3. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds. Ye X; Yin X; Yang D; Tan J; Liu G Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840 [TBL] [Abstract][Full Text] [Related]
4. Novel bone substitute composed of oligomeric proanthocyanidins-crosslinked gelatin and tricalcium phosphate. Chen KY; Shyu PC; Chen YS; Yao CH Macromol Biosci; 2008 Oct; 8(10):942-50. PubMed ID: 18555459 [TBL] [Abstract][Full Text] [Related]
5. [Preliminary study on chitosan/HAP bilayered scaffold]. Zhang H; Wang W; Chu D; Liu Y; Guan J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Nov; 22(11):1358-63. PubMed ID: 19068607 [TBL] [Abstract][Full Text] [Related]
6. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985 [TBL] [Abstract][Full Text] [Related]
7. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin. Xie XH; Wang XL; Zhang G; He YX; Leng Y; Tang TT; Pan X; Qin L J Tissue Eng Regen Med; 2015 Aug; 9(8):961-72. PubMed ID: 23255530 [TBL] [Abstract][Full Text] [Related]
8. Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering. Lopez-Heredia MA; Sohier J; Gaillard C; Quillard S; Dorget M; Layrolle P Biomaterials; 2008 Jun; 29(17):2608-15. PubMed ID: 18358527 [TBL] [Abstract][Full Text] [Related]
9. [An experimental study on repairing bone defect with composite of beta-tricalcium phosphate-hyaluronic acid-type I collagen-marrow stromal cells]. Wei A; Liu S; Peng H; Tao H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Jun; 19(6):468-72. PubMed ID: 16038466 [TBL] [Abstract][Full Text] [Related]
10. Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow. Zhang W; Walboomers XF; van Osch GJ; van den Dolder J; Jansen JA Tissue Eng Part A; 2008 Feb; 14(2):285-94. PubMed ID: 18333781 [TBL] [Abstract][Full Text] [Related]
11. Flow perfusion culture of marrow stromal cells seeded on porous biphasic calcium phosphate ceramics. Holtorf HL; Sheffield TL; Ambrose CG; Jansen JA; Mikos AG Ann Biomed Eng; 2005 Sep; 33(9):1238-48. PubMed ID: 16133930 [TBL] [Abstract][Full Text] [Related]
12. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering. Lee GS; Park JH; Shin US; Kim HW Acta Biomater; 2011 Aug; 7(8):3178-86. PubMed ID: 21539944 [TBL] [Abstract][Full Text] [Related]
13. Maxillary sinus floor elevation using a tissue-engineered bone with calcium-magnesium phosphate cement and bone marrow stromal cells in rabbits. Zeng D; Xia L; Zhang W; Huang H; Wei B; Huang Q; Wei J; Liu C; Jiang X Tissue Eng Part A; 2012 Apr; 18(7-8):870-81. PubMed ID: 22066969 [TBL] [Abstract][Full Text] [Related]
14. Bone differentiation of marrow-derived mesenchymal stem cells using beta-tricalcium phosphate-alginate-gelatin hybrid scaffolds. Eslaminejad MB; Mirzadeh H; Mohamadi Y; Nickmahzar A J Tissue Eng Regen Med; 2007; 1(6):417-24. PubMed ID: 18247428 [TBL] [Abstract][Full Text] [Related]
15. The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction. Özdal-Kurt F; Tuğlu I; Vatansever HS; Tong S; Deliloğlu-Gürhan SI Biotech Histochem; 2015; 90(7):516-28. PubMed ID: 25994048 [TBL] [Abstract][Full Text] [Related]
16. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering. Rodrigues MT; Martins A; Dias IR; Viegas CA; Neves NM; Gomes ME; Reis RL J Tissue Eng Regen Med; 2012 Nov; 6(10):e24-30. PubMed ID: 22451140 [TBL] [Abstract][Full Text] [Related]
17. Hierarchically porous structure, mechanical strength and cell biological behaviors of calcium phosphate composite scaffolds prepared by combination of extrusion and porogen burnout technique and enhanced by gelatin. Feng S; He F; Ye J Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():217-224. PubMed ID: 29025651 [TBL] [Abstract][Full Text] [Related]
18. Proliferation of equine bone marrow-derived mesenchymal stem cells in gelatin/β-tricalcium phosphate sponges. Seo JP; Tsuzuki N; Haneda S; Yamada K; Furuoka H; Tabata Y; Sasaki N Res Vet Sci; 2012 Dec; 93(3):1481-6. PubMed ID: 22424884 [TBL] [Abstract][Full Text] [Related]
19. Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model. Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Srouji S; Livne E; Reis RL; Neves NM J Tissue Eng Regen Med; 2012 Jan; 6(1):21-8. PubMed ID: 21312336 [TBL] [Abstract][Full Text] [Related]
20. Bone tissue engineering using bone marrow stromal cells and an injectable sodium alginate/gelatin scaffold. Xia Y; Mei F; Duan Y; Gao Y; Xiong Z; Zhang T; Zhang H J Biomed Mater Res A; 2012 Apr; 100(4):1044-50. PubMed ID: 22318897 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]