BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22393285)

  • 1. Gambogic acid-loaded magnetic Fe(3)O(4) nanoparticles inhibit Panc-1 pancreatic cancer cell proliferation and migration by inactivating transcription factor ETS1.
    Wang C; Zhang H; Chen Y; Shi F; Chen B
    Int J Nanomedicine; 2012; 7():781-7. PubMed ID: 22393285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the enhanced anticancer efficacy of gambogic acid on Capan-1 pancreatic cancer cells when mediated via magnetic Fe3O4 nanoparticles.
    Wang C; Zhang H; Chen B; Yin H; Wang W
    Int J Nanomedicine; 2011; 6():1929-35. PubMed ID: 21931488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic effect of a combination of nanoparticulate Fe3O4 and gambogic acid on phosphatidylinositol 3-kinase/Akt/Bad pathway of LOVO cells.
    Fang L; Chen B; Liu S; Wang R; Hu S; Xia G; Tian Y; Cai X
    Int J Nanomedicine; 2012; 7():4109-18. PubMed ID: 22888247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel curcumin-loaded magnetic nanoparticles for pancreatic cancer treatment.
    Yallapu MM; Ebeling MC; Khan S; Sundram V; Chauhan N; Gupta BK; Puumala SE; Jaggi M; Chauhan SC
    Mol Cancer Ther; 2013 Aug; 12(8):1471-80. PubMed ID: 23704793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inducing cell cycle arrest and apoptosis by dimercaptosuccinic acid modified Fe3O4 magnetic nanoparticles combined with nontoxic concentration of bortezomib and gambogic acid in RPMI-8226 cells.
    Zhang W; Qiao L; Wang X; Senthilkumar R; Wang F; Chen B
    Int J Nanomedicine; 2015; 10():3275-89. PubMed ID: 25995634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ETS-1: A potential target of glycolysis for metabolic therapy by regulating glucose metabolism in pancreatic cancer.
    Zhang X; Wu D; Aldarouish M; Yin X; Li C; Wang C
    Int J Oncol; 2017 Jan; 50(1):232-240. PubMed ID: 27878249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. microRNA-9 suppresses the proliferation, invasion and metastasis of gastric cancer cells through targeting cyclin D1 and Ets1.
    Zheng L; Qi T; Yang D; Qi M; Li D; Xiang X; Huang K; Tong Q
    PLoS One; 2013; 8(1):e55719. PubMed ID: 23383271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic effect of magnetic nanoparticles of Fe(3)O(4) with gambogic acid on apoptosis of K562 leukemia cells.
    Chen B; Liang Y; Wu W; Cheng J; Xia G; Gao F; Ding J; Gao C; Shao Z; Li G; Chen W; Xu W; Sun X; Liu L; Li X; Wang X
    Int J Nanomedicine; 2009; 4():251-9. PubMed ID: 20011242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gambogic acid induces G0/G1 cell cycle arrest and cell migration inhibition via suppressing PDGF receptor β tyrosine phosphorylation and Rac1 activity in rat aortic smooth muscle cells.
    Liu Y; Li W; Ye C; Lin Y; Cheang TY; Wang M; Zhang H; Wang S; Zhang L; Wang S
    J Atheroscler Thromb; 2010 Sep; 17(9):901-13. PubMed ID: 20543524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel redox/pH dual-responsive and hyaluronic acid-decorated multifunctional magnetic complex micelle for targeted gambogic acid delivery for the treatment of triple negative breast cancer.
    Sang MM; Liu FL; Wang Y; Luo RJ; Huan XX; Han LF; Zhang ZT; Feng F; Qu W; Liu W; Zheng F
    Drug Deliv; 2018 Nov; 25(1):1846-1857. PubMed ID: 30334478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MiR-129 inhibits cell proliferation and metastasis by targeting ETS1 via PI3K/AKT/mTOR pathway in prostate cancer.
    Xu S; Ge J; Zhang Z; Zhou W
    Biomed Pharmacother; 2017 Dec; 96():634-641. PubMed ID: 29035829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA-338-3p inhibits the progression of bladder cancer through regulating ETS1 expression.
    Zhang L; Yan R; Zhang SN; Zhang HZ; Ruan XJ; Cao Z; Gu XZ
    Eur Rev Med Pharmacol Sci; 2019 Mar; 23(5):1986-1995. PubMed ID: 30915741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. α-Mangostin-encapsulated PLGA nanoparticles inhibit pancreatic carcinogenesis by targeting cancer stem cells in human, and transgenic (Kras(G12D), and Kras(G12D)/tp53R270H) mice.
    Verma RK; Yu W; Shrivastava A; Shankar S; Srivastava RK
    Sci Rep; 2016 Sep; 6():32743. PubMed ID: 27624879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA‑766 inhibits the malignant biological behaviours of pancreatic ductal adenocarcinoma by directly targeting ETS1.
    Li S; Yan G; Yue M; Kang Z; Wang L
    Mol Med Rep; 2019 Feb; 19(2):1380-1387. PubMed ID: 30569091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melatonin prevents human pancreatic carcinoma cell PANC-1-induced human umbilical vein endothelial cell proliferation and migration by inhibiting vascular endothelial growth factor expression.
    Cui P; Yu M; Peng X; Dong L; Yang Z
    J Pineal Res; 2012 Mar; 52(2):236-43. PubMed ID: 21913973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eicosapentaenoic Acid Inhibits
    Chiu CF; Hsu MI; Yeh HY; Park JM; Shen YS; Tung TH; Huang JJ; Wu HT; Huang SY
    Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33801246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propofol suppresses gastric cancer tumorigenesis by modulating the circular RNA‑PVT1/miR‑195‑5p/E26 oncogene homolog 1 axis.
    Sui H; Zhu C; Li Z; Yang J
    Oncol Rep; 2020 Oct; 44(4):1736-1746. PubMed ID: 32945521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MIF inhibitor, ISO-1, attenuates human pancreatic cancer cell proliferation, migration and invasion in vitro, and suppresses xenograft tumour growth in vivo.
    Cheng B; Wang Q; Song Y; Liu Y; Liu Y; Yang S; Li D; Zhang Y; Zhu C
    Sci Rep; 2020 Apr; 10(1):6741. PubMed ID: 32317702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. miR‑381 functions as a tumor suppressor by targeting ETS1 in pancreatic cancer.
    Qiao G; Li J; Wang J; Wang Z; Bian W
    Int J Mol Med; 2019 Aug; 44(2):593-607. PubMed ID: 31173154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KML001 inhibits cell proliferation and invasion in pancreatic cancer cells through suppression of NF-κB and VEGF-C.
    Yang MH; Kim HT; Lee KT; Yang S; Lee JK; Lee KH; Rhee JC
    Anticancer Res; 2014 Jul; 34(7):3469-74. PubMed ID: 24982355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.