These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 22393350)

  • 21. Control of oscillating glycolysis of yeast by stochastic, periodic, and steady source of substrate: a model and experimental study.
    Boiteux A; Goldbeter A; Hess B
    Proc Natl Acad Sci U S A; 1975 Oct; 72(10):3829-33. PubMed ID: 172886
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Turing Instabilities and Rotating Spiral Waves in Glycolytic Processes.
    Cisneros-Ake LA; Gonzalez-Rodriguez JC; González-Ramírez LR
    Bull Math Biol; 2022 Aug; 84(9):100. PubMed ID: 35951127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative analysis of cellular metabolic dissipative, self-organized structures.
    de la Fuente IM
    Int J Mol Sci; 2010 Sep; 11(9):3540-99. PubMed ID: 20957111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative elementary mode analysis of metabolic pathways: the example of yeast glycolysis.
    Schwartz JM; Kanehisa M
    BMC Bioinformatics; 2006 Apr; 7():186. PubMed ID: 16584566
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Supramolecular organization of glycolytic enzymes.
    Kurganov BI; Sugrobova NP; Mil'man LS
    J Theor Biol; 1985 Oct; 116(4):509-26. PubMed ID: 2999516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glycolytic oscillations and limits on robust efficiency.
    Chandra FA; Buzi G; Doyle JC
    Science; 2011 Jul; 333(6039):187-92. PubMed ID: 21737735
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Explicit consideration of topological and parameter uncertainty gives new insights into a well-established model of glycolysis.
    Achcar F; Barrett MP; Breitling R
    FEBS J; 2013 Sep; 280(18):4640-51. PubMed ID: 23865459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploring the effect of variable enzyme concentrations in a kinetic model of yeast glycolysis.
    Bruck J; Liebermeister W; Klipp E
    Genome Inform; 2008; 20():1-14. PubMed ID: 19425118
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Model evaluation for glycolytic oscillations in yeast biotransformations of xenobiotics.
    Brusch L; Cuniberti G; Bertau M
    Biophys Chem; 2004 Jun; 109(3):413-26. PubMed ID: 15110938
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of glycolysis.
    Boiteux A; Hess B
    Philos Trans R Soc Lond B Biol Sci; 1981 Jun; 293(1063):5-22. PubMed ID: 6115423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The glycolytic oscillator.
    Hess B
    J Exp Biol; 1979 Aug; 81():7-14. PubMed ID: 229183
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling cancer glycolysis under hypoglycemia, and the role played by the differential expression of glycolytic isoforms.
    Marín-Hernández A; López-Ramírez SY; Del Mazo-Monsalvo I; Gallardo-Pérez JC; Rodríguez-Enríquez S; Moreno-Sánchez R; Saavedra E
    FEBS J; 2014 Aug; 281(15):3325-45. PubMed ID: 24912776
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Is a constant low-entropy process at the root of glycolytic oscillations?
    Thoke HS; Olsen LF; Duelund L; Stock RP; Heimburg T; Bagatolli LA
    J Biol Phys; 2018 Sep; 44(3):419-431. PubMed ID: 29796745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic pathways reconstruction by frequency and amplitude response to forced glycolytic oscillations in yeast.
    Zimmerman WB
    Biotechnol Bioeng; 2005 Oct; 92(1):91-116. PubMed ID: 16003780
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated refinement and inference of analytical models for metabolic networks.
    Schmidt MD; Vallabhajosyula RR; Jenkins JW; Hood JE; Soni AS; Wikswo JP; Lipson H
    Phys Biol; 2011 Oct; 8(5):055011. PubMed ID: 21832805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Yeast glycolytic oscillations that are not controlled by a single oscillophore: a new definition of oscillophore strength.
    Reijenga KA; van Megen YM; Kooi BW; Bakker BM; Snoep JL; van Verseveld HW; Westerhoff HV
    J Theor Biol; 2005 Feb; 232(3):385-98. PubMed ID: 15572063
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism.
    van den Brink J; Canelas AB; van Gulik WM; Pronk JT; Heijnen JJ; de Winde JH; Daran-Lapujade P
    Appl Environ Microbiol; 2008 Sep; 74(18):5710-23. PubMed ID: 18641162
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The response of oscillating glycolysis to perturbations in the NADH/NAD system: a comparison between experiments and a computer model.
    Richter O; Betz A; Giersch C
    Biosystems; 1975 Jul; 7(1):137-46. PubMed ID: 168933
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of a new method of nonlinear dynamical system identification to biochemical problems.
    Karnaukhov AV; Karnaukhova EV
    Biochemistry (Mosc); 2003 Mar; 68(3):253-9. PubMed ID: 12733966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new regulatory principle for in vivo biochemistry: pleiotropic low affinity regulation by the adenine nucleotides--illustrated for the glycolytic enzymes of Saccharomyces cerevisiae.
    Mensonides FI; Bakker BM; Cremazy F; Messiha HL; Mendes P; Boogerd FC; Westerhoff HV
    FEBS Lett; 2013 Sep; 587(17):2860-7. PubMed ID: 23856461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.